String name="zhang";
Log.e(TAG, "initView name: "+name.hashCode() );
HashMap<String, String> params = new HashMap<>();
params.put(name,"");
这里的name,打印的值是:115864556
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
这里,我们求一下hash(Object key)返回的值是多少,即:
key.hashcode() =115864556
在hash(Object key)方法中,key是不等于null,所以return:115864556 ^ (115864556 >>> 16)
115864556 ^ (115864556 >>> 16) 是10进制,我们换算成2进制
即:
110111001111111001111101100 ^ (110111001111111001111101100 >>> 16)
>>> 表示正向右移,就是如果是负数右移,那它的结果就是正的,
110111001111111001111101100右移16位,从右往左数16下,靠右边的数,都去掉,即:11011100111,高位没有数了,我们补上0,即:000000000000000011011100111
所以:
110111001111111001111101100 ^ (110111001111111001111101100 >>> 16)
= 110111001111111001111101100 ^ 000000000000000011011100111
异或运算是2者相同则为0,不同则为1
110111001111111001111101100
000000000000000011011100111
它们之间隔的太密,加个小空格好看好算,即:
11 011 100 111 111 1001 111 101 100
00 000 000 000 000 0011 011 100 111
11 011 100 111 111 1010 100 001 011 它的十进制为:115864843
那么这里返回的就是:115864843
然后跟着方法putVal(),我们先把参数对应起来:
hash:115864843, key:"zhang", value:"", onlyIfAbsent:false, evict:true
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
刚进来,table肯定是null,则会执行这个条件
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
看resize()方法
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
因为第一次进,会走到条件:
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
相当于初始化了table,newCap是等于threshold=16,就是默认大小;
所以n=tab.length=16
然后putVal方法中第二个判断:
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
}
n=16,p=null,i=0,hash=115864843即:
(p=tab[ i= (n-1) & hash])==null) 即:(null=tab[i=16-1&115864843])==null)
即:(null=tab[15&115864843]==null)
(可读性极差;这里虽然可读性差,但是减少了新建局部变量,put方面肯定高使用频率,所以就减少了多次新建局部变量,内存不会一会新建,一会儿回收,避免频繁的内存新建变量、回收变量)
计算与运算:15&115864843(与运算,2者为1,则为1)
1111&110111001111111010100001011
0000 0000 0000 0000 0000 0001 111
1101 1100 1111 1110 1010 0001 011
0000 0000 0000 0000 0000 0001 011 它的十进制为:11;
好家伙,神奇的一幕出现了,神奇在哪呢?1、一直对象的hashcode值,可以是一个非常大的数,然后跟一个threshold-1的数做异或运算,结过就是一个很小的数,这个数在threshold-1范围内,包含threshold-1本身,所以用这个算法,来计算下标值;没有用加减乘除,只用了位运算,性能是最高的;threshold是动画变化的,它的值是2的n次方,默认是16,即2的4次方2*2*2*2=16,2*2*2*2*2=16*2=32,2*2*2*2*2*2=32*2=64,
所以这里的判断为:((null=tab[11])==null),tab只是有长度,有了空间,但是里面的值还暂未添加,都是空的,所以会执行它下面的代码:
tab[i] = newNode(hash, key, value, null);
这里就是说tab[11]=newNode(hash, key, value, null);
即:
Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
return new Node<>(hash, key, value, next);
}
这里就是返回一个new Node<>(),就是新建了一个对象节点
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
看到这里,我们的else里面就不要看了,就直接到了
else{...}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
这里的size++就是0+1=1,是小于默认长度16的所以不执行resize()方法;继续执行afterNodeInsertion(evict); evict是true,上面传过来的参数;
- 这里来总结一下:
1、在put时,hashMap会根据key的object的hashcode的值,和自身正右移16位的值做异或运算(两者相同则为0,否则为1),
2、刚进来是,table数组内无数值,为null,会初始化table值,并且大小为默认大小16,
3、在插入时,需要确定下标值,这里通过异或运算的值和threshold的值做&与运算(2者为1,则为1,否则为0),这里的下标值,一定是小于等于threshold的值,它的值是2的n次方,性能高于普通的加减乘除;这里如果table[下标值]为空,则直接新建一个节点;
4、最后,会将大小++,如果大小是小于等于threshold,则不调整大小;
分析到这里大家消化消化,消化好了,我们移步到下节,继续分析探讨: