为了保证在业务高峰期,线上系统也能保证一定的弹性和稳定性,最有效的方案就是进行服务降级了,而限流就是降级系统最常采用的方案之一,常用的限流手段有如下几种,下面进行简单的介绍,供大家参考学习,至于具体的到实际业务中,还是需要根据实际业务进行改造和选择,本文只是为了提供基本的案例,仅供参考。
令牌桶(Token Bucket)、漏桶(leaky bucket)和计数器算法是最常用的三种限流的算法。
1. 令牌桶算法
令牌桶算法的原理是系统会以一个恒定的速度往桶里放入令牌,而如果请求需要被处理,则需要先从桶里获取一个令牌,当桶里没有令牌可取时,则拒绝服务。 当桶满时,新添加的令牌被丢弃或拒绝。
示例代码:
public class RateLimiterDemo {
private static RateLimiter limiter = RateLimiter.create(5);
public static void exec() {
limiter.acquire(1);
try {
// 处理核心逻辑
TimeUnit.SECONDS.sleep(1);
System.out.println("--" + System.currentTimeMillis() / 1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
Guava RateLimiter 提供了令牌桶算法可用于平滑突发限流策略。该示例为每秒中产生5个令牌,每200毫秒会产生一个令牌。limiter.acquire() 表示消费一个令牌。当桶中有足够的令牌时,则直接返回0,否则阻塞,直到有可用的令牌数才返回,返回的值为阻塞的时间。
2. 漏桶算法
它的主要目的是控制数据注入到网络的速率,平滑网络上的突发流量,数据可以以任意速度流入到漏桶中。漏桶算法提供了一种机制,通过它,突发流量可以被整形以便为网络提供一个稳定的流量。 漏桶可以看作是一个带有常量服务时间的单服务器队列,如果漏桶为空,则不需要流出水滴,如果漏桶(包缓存)溢出,那么水滴会被溢出丢弃。
3. 计数器限流算法
计数器限流算法也是比较常用的,主要用来限制总并发数,比如数据库连接池大小、线程池大小、程序访问并发数等都是使用计数器算法。
使用计数器限流示例1
public class CountRateLimiterDemo1 {
private static AtomicInteger count = new AtomicInteger(0);
public static void exec() {
if (count.get() >= 5) {
System.out.println("请求用户过多,请稍后在试!"+System.currentTimeMillis()/1000);
} else {
count.incrementAndGet();
try {
//处理核心逻辑
TimeUnit.SECONDS.sleep(1);
System.out.println("--"+System.currentTimeMillis()/1000);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
count.decrementAndGet();
}
}
}
}
使用AomicInteger来进行统计当前正在并发执行的次数,如果超过域值就简单粗暴的直接响应给用户,说明系统繁忙,请稍后再试或其它跟业务相关的信息。
弊端:使用 AomicInteger 简单粗暴超过域值就拒绝请求,可能只是瞬时的请求量高,也会拒绝请求。
使用计数器限流示例2
public class CountRateLimiterDemo2 {
private static Semaphore semphore = new Semaphore(5);
public static void exec() {
if(semphore.getQueueLength()>100){
System.out.println("当前等待排队的任务数大于100,请稍候再试...");
}
try {
semphore.acquire();
// 处理核心逻辑
TimeUnit.SECONDS.sleep(1);
System.out.println("--" + System.currentTimeMillis() / 1000);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
semphore.release();
}
}
}
使用Semaphore信号量来控制并发执行的次数,如果超过域值信号量,则进入阻塞队列中排队等待获取信号量进行执行。如果阻塞队列中排队的请求过多超出系统处理能力,则可以在拒绝请求。
相对Atomic优点:如果是瞬时的高并发,可以使请求在阻塞队列中排队,而不是马上拒绝请求,从而达到一个流量削峰的目的。