- 背景概述
基于yarn模式的spark集群,共8个节点。其中,Hadoop和spark均采用CDH5.12.1版本,独立一个节点部署Cloudera Manager Server5,NameNode和SecondNameNode部署于同一个的机器上。
这是一个小型的用于生产环境测试、开发的集群,通过Cloudera manager 管理控制控制平台进行管理和监控。
在完成spark1.6版本升级到spark2.2,经过一些参数配置修改和调试后,集群达到了平衡稳定,如下图:
- 测试过程
本来岁月静好,集群安稳运行,结果今天在启用spark2-shell服务后,在集群各个节点执行jps命令后,发现多了一个进程:ExecutorLauncher,而且仅在NameNode节点显示。如下图:
Feiwei01:Namenode节点:
Feiwei04:其中一个测试节点:
在另一个节点处ssh登陆feiwei04,输入jps命令,查看显示:
本地没有ExecutorLauncher进程。
然后在Cloudera Manager 浏览器页面查看到相应的NameNode节点的物理内存消耗发生变化。
开启spark2-shell服务前:
开启服务后:
我们可以看到,各个节点的内存消耗均有变化,但是NameNode节点和feiwei04测试节点变化最大最明显。
接下来,再在一个节点启动Spark2-shell,jps进程和内存又有变化,如下图:
新增测试节点feiwei06:
NameNode节点Jps新增:
内存新变化:
后续依次增加测试节点,启动shell服务后,jps进程和内存都会变化。
Jps进程会比较随机的在节点上启动,有的节点一个,有的两个,有的没有。一般的,在没有启用shell服务的节点会有一个监听进程。
内存消耗:
- 总结
起初,测试显示好像和NameNode有些关系,因为出现了如图情况:
但是多番测试后,发现并非如此,如图显示就和NameNode节点没有必然联系:
我们都知道spark是基于内存的计算框架,会对内存需求大,在考虑集群规划的时候,往往应该需要考虑到集群整体和各个节点的规划布局,适当冗余,有利于集群资源高效利用。
另外,访问spark主节点的18089端口,查看其历史任务,如图: