一、CAP理论概述

分布式领域中存在CAP理论,且该理论已被证明:任何分布式系统只可同时满足两点,无法三者兼顾。
  ①C:Consistency,一致性,数据一致更新,所有数据变动都是同步的。
  ②A:Availability,可用性,系统具有好的响应性能。
  ③P:Partition tolerance,分区容错性。
因此,将精力浪费在思考如何设计能满足三者的完美系统上是愚钝的,应该根据应用场景进行适当取舍。

一致性
  一致性是指从系统外部读取系统内部的数据时,在一定约束条件下相同,即数据变动在系统内部各节点应该是同步的。根据一致性的强弱程度不同,可以将一致性级别分为如下几种:

  ①强一致性(strong consistency)。任何时刻,任何用户都能读取到最近一次成功更新的数据。
  ②单调一致性(monotonic consistency)。任何时刻,任何用户一旦读到某个数据在某次更新后的值,那么就不会再读到比这个值更旧的值。也就是说,可  获取的数据顺序必是单调递增的。
  ③会话一致性(session consistency)。任何用户在某次会话中,一旦读到某个数据在某次更新后的值,那么在本次会话中就不会再读到比这值更旧的值   会话一致性是在单调一致性的基础上进一步放松约束,只保证单个用户单个会话内的单调性,在不同用户或同一用户不同会话间则没有保障。示例case:php的  session概念。
  ④ 最终一致性(eventual consistency)。用户只能读到某次更新后的值,但系统保证数据将最终达到完全一致的状态,只是所需时间不能保障。
  ⑥弱一致性(weak consistency)。用户无法在确定时间内读到最新更新的值。

二、ZooKeeper提供的一致性服务

分区容错性和可用性上做了一定折中,这和CAP理论是吻合的。但实际上zookeeper提供的只是单调一致性。
原因:
  1. 假设有2n+1个server,在同步流程中,leader向follower同步数据,当同步完成的follower数量大于 n+1时同步流程结束,系统可接受client的连接请求。如果client连接的并非同步完成的follower,那么得到的并非最新数据,但可以保证单调性。
  2. follower接收写请求后,转发给leader处理;leader完成两阶段提交的机制。向所有server发起提案,当提案获得超过半数(n+1)的server认同后,将对整个集群进行同步,超过半数(n+1)的server同步完成后,该写请求完成。如果client连接的并非同步完成follower,那么得到的并非最新数据,但可以保证单调性。

用分布式系统的CAP原则来分析Zookeeper:
(1)C: Zookeeper保证了最终一致性,在十几秒可以Sync到各个节点.
(2)A: Zookeeper保证了可用性,数据总是可用的,没有锁.并且有一大半的节点所拥有的数据是最新的,实时的. 如果想保证取得是数据一定是最新的,需要手工调用Sync()
(2)P: 有2点需要分析的.
    ① 节点多了会导致写数据延时非常大,因为需要多个节点同步.