单一传感器获得的信息非常有限,而且,还要受到自身品质和性能的影响,因此,智能机器人通常配有数量众多的不同类型的传感器,以满足探测和数据采集的需要。人们提出了多传感器融合技术多传感器融合又称多传感器信息融合,有时也称作多传感器数据融合。以增加各个传感器之间的信息互通,提高整个系统的可靠性和稳健性,增强数据的可信度,提高精度,扩展系统的时间、空间覆盖率,增加系统的实时性和信息利用率等。
随着机器人技术的不断发展,机器人的应用领域和功能有了极大的拓展和提高。智能化已成为机器人技术的发展趋势,而传感器技术则是实现机器人智能化的基础之一。由于单一传感器获得的信息非常有限,而且,还要受到自身品质和性能的影响,因此,智能机器人通常配有数量众多的不同类型的传感器,以满足探测和数据采集的需要。若对各传感器采集的信息进行单独、孤立地处理,不仅会导致信息处理工作量的增加,而且,割断了各传感器信息间的内在联系,丢失了信息经有机组合后可能蕴含的有关环境特征,造成信息资源的浪费,甚至可能导致决策失误。为了解决上述问题人们提出了多传感器融合技术(multi-sensor fusion)。
1. 多传感器融合的意义
多传感器融合又称多传感器信息融合(multi-sensor information fusion),有时也称作多传感器数据融合(multi-sensor data fusion),于1973年在美国国防部资助开发的声纳信号处理系统中被首次提出,它是对多种信息的获取、表示及其内在联系进行综合处理和优化的技术。它从多信息的视角进行处理及综合,得到各种信息的内在联系和规律,从而剔除无用的和错误的信息,保留正确的和有用的成分,最终实现信息的优化,也为智能信息处理技术的研究提供了新的观念。
2. 按层次结构划分多传感器融合算法
多传感器融合在结构上按其在融合系统中信息处理的抽象程度,主要划分为三个层次: 数据层融合、特征层融合和决策层融合。
2.1. 数据层融合
也称像素级融合,首先将传感器的观测数据融合, 然后从融合的数据中提取特征向量, 并进行判断识别。数据层融合需要传感器是同质的(传感器观测的是同一物理现象) , 如果多个传感器是异质的(观测的不是同一个物理量) , 那么数据只能在特征层或决策层进行融合。数据层融合不存在数据丢失的问题, 得到的结果也是最准确的, 但计算量大,且对系统通信带宽的要求很高。
2.2. 特征层融合
特征层融合属于中间层次,先从每种传感器提供的观测数据中提取的有代表性的特征, 这些特征融合成单一的特征向量, 然后运用模式识别的方法进行处理。这种方法的计算量及对通信带宽的要求相对降低, 但由于部分数据的舍弃使其准确性有所下降。
2.3. 决策层融合
决策层融合属于高层次的融合,由于对传感器的数据进行了浓缩, 这种方法产生的结果相对而言最不准确, 但它的计算量及对通信带宽的要求最低。
对于特定的多传感器融合系统工程应用, 应综合考虑传感器的性能、系统的计算能力、通信带宽、期望的准确率以及资金能力等因素, 以确定哪种层次是最优的。另外, 在一个系统中, 也可能同时在不同的融合层次上进行融合。
3. 按抽象级别划分传感器融合算法
最常见的融合类型是抽象级别的。在这种情况下,问题是“应该什么时候进行融合?”
文章激光雷达和摄像头的融合中描述了早期(EARLY)和后期(LATE)融合两种过程。
在业界,还有其他称呼:低级(Low Level)、中级(Mid-Level)和高级(High-Level)传感器融合。
3.1. 低级别融合:融合原始数据
低级别传感器融合是关于融合来自多个传感器的原始数据。例如,融合来自激光雷达的点云数据和来自摄像头的像素级数据。
✅ 这种类型的融合在未来几年具有很大的潜力,因为其考虑了所有数据。
❌ 早期融合(Low-Level)几年前还很难做到的,因为所需的处理量很大。每毫秒可以将数十万个点与数十万个像素融合在一起。
下面是一个摄像头和激光雷达低级别融合的示例。
在此过程中使用了对象检测,但真正完成这项工作的是将3D点云投影到图像中,然后将其与像素关联起来。
3.2. 中级别融合:融合检测数据
中级传感器融合是将传感器独立检测到的物体进行融合。
如果摄像头检测到障碍物,雷达也检测到它,我们把这些结果融合到一起形成对障碍物的位置、类别和速度的最佳估计。通常使用的方法是卡尔曼滤波器(贝叶斯算法)。
✅ 这个过程很容易理解,并且包含了几个现有的实现。
❌ 它严重依赖于检测器。如果一个失败,整个融合都可能失败。卡尔曼滤波器来解决这个问题!
中级传感器融合示例:
在此示例中,我们将来自激光雷达的3D边界框与来自对象检测算法的2D边界框融合在一起。该过程有效;但也可以逆转。可以将3D激光雷达的结果映射到2D中,并在2D影像中进行数据融合。
3.3. 高级别融合:融合轨迹
最后,高级传感器融合是关于融合对象及其轨迹。我们不仅依赖于检测,还依赖于预测和跟踪。
✅ 此过程高一级,其优点是简单。
❌ 一个主要问题是可能会丢失太多信息。如果追踪是错误的,那么整件事都是错误的。
雷达和摄像头之间按抽象级别的数据融合图:
4. 按中心化级别划分传感器融合
融合算法的第二类方法是按中心化级别来区分的。该场景下的问题是“融合在哪里发生?”。主计算机可以做,或者每个传感器可以做自己的检测和融合。 一些方法是通过使用称为卫星架构的技术来做融合的。
我们来了解一下3种类型的融合:
- 中心化:一个中央单元处理融合(低级别)。
- 去中心化:每个传感器融合数据并将其转发到下一个。
- 分布式:每个传感器在本地处理数据并将其发送到下一个单元(后期融合)。
我们以一辆经典的自动驾驶汽车为例。在这种情况下,每个传感器都有自己的计算机。所有这些计算机都连接到一个中央计算单元。
与此相反,Aptiv开发了一种卫星架构的架构。这个想法是:所有传感器都连接到一个中央单元上,该单元处理称为主动安全域控制器的智能。
在这个过程中,利用传感器的位置和传递的信息类型,可以帮助减轻车辆的总重量,并随着传感器的数量可以更好地扩展。
左图的情况如下:
- 传感器只是“卫星”:它们只是用来收集原始数据的。
- 主计算机中进行360°的融合:不必安装非常好的传感器,因为不会进行单个检测。
- 检测是在360°的全景图上完成的。
这是“中心化融合”的两个例子。当我们使用经典架构时,可能会遇到另外两种类型的融合。
雷达和摄像头之间按抽象级别的数据融合图:
5. 按竞争级别划分传感器融合
对传感器融合算法进行分类的最后一种方法是按竞争级别。
- 在抽象级别,问题是“什么时候”融合应该发生。
- 在中心化级别,它是关于“在哪里”的。
- 在竞争级别,问题是“融合应该做什么?”
同样,有3种可能。
5.1. 竞争融合
竞争融合是指传感器用于相同目的。例如,当同时使用雷达和激光雷达来检测行人时。这里发生的数据融合过程称为冗余,使用术语“竞争”。
5.2. 互补融合
互补融合是指使用不同的传感器观察不同的场景来获取我们使用其他方式无法获得的东西。例如,使用多个摄像头构建全景图时。由于这些传感器相互补充,使用术语“互补”。
5.3. 协同融合
最后,协同融合是关于使用两个或更多传感器来产生一个新场景,但是关于同一个对象的。例如,在使用2D传感器进行3D扫描或3D重建时。
要学习如何实现这种类型的融合,可以学习立体视觉课程,该课程可以协调融合两个摄像头以产生3D结果。
6. 多传感器融合的算法
融合算法是融合处理的基础。它是将多元输入数据根据信息融合的功能要求,在不同融合层次上采用不同的数学方法,对数据进行综合处理,最终实现融合。目前已有大量的融合算法,它们都有各自的优缺点。这些融合算法总体上法可以分为三大类型:嵌入约束法、证据组合法、人工神经网络法。
6.1. 嵌入约束法
由多种传感器所获得的客观环境的多组数据就是客观环境按照某种映射关系形成的像,传感器信息融合就是通过像求解原像,即对客观环境加以了解。用数学语言描述就是,即使所有传感器的全部信息,也只能描述环境的某些方面的特征,而具有这些特征的环境却有很多,要使一组数据对应惟一的环境(即上述映射为一一映射),就必须对映射的原像和映射本身加约束条件,使问题能有惟一的解。嵌入约束法有两种基本的方法:贝叶斯估计和卡尔曼滤波。
6.2. 证据组合法
证据组合法认为完成某项智能任务是依据有关环境某方面的信息做出几种可能的决策,而多传感器数据信息在一定程度上反映环境这方面的情况。因此,分析每一数据作为支持某种决策证据的支持程度,并将不同传感器数据的支持程度进行组合,即证据组合,分析得出现有组合证据支持程度最大的决策作为信息融合的结果。
证据组合法是为完成某一任务的需要而处理多种传感器的数据信息。它先对单个传感器数据信息每种可能决策的支持程度给出度量(即数据信息作为证据对决策的支持程度),再寻找一种证据组合方法或规则,使在已知两个不同传感器数据(即证据)对决策的分别支持程度时,通过反复运用组合规则,最终得出全体数据信息的联合体对某决策总的支持程度,得到最大证据支持决策,即传感器信息融合的结果。
常用的证据组合方法有:概率统计方法、D-S(Dempster-Shafer)证据推理法。
6.3. 人工神经网络法
人工神经网络通过模仿人脑的结构和工作原理,设计和建立相应的机器和模型并完成一定的智能任务。神经网络根据当前系统所接收到的样本的相似性,确定分类标准。这种确定方法主要表现在网络权值分布上,同时可采用神经网络特定的学习算法来获取知识,得到不确定性推理机制。采用神经网络法的多传感器信息融合,分三个主要步骤:
- 根据智能系统要求及传感器信息融合的形式,选择其拓扑结构;
- 各传感器的输入信息综合处理为一总体输入函数,并将此函数映射定义为相关单元的映射函数,通过神经网络与环境的交互作用把环境的统计规律反映网络本身的结构;
- 对传感器输出信息进行学习、理解,确定权值的分配,进而对输入模式作出解释,将输入数据向量转换成高级逻辑(符号)概念。
7. 小结
在多传感器融合技术中,融合结构、融合算法都占有重要地位。随着多传感器融合研究与应用的深入,未来的多传感器融合将会是一个更加复杂的信息处理过程,不仅包括许多具体的算法,而且结构也比较复杂。
如何根据实际应用将算法与结构有机地结合在一起,为整个融合系统提供更加有效的融合策略,这是未来多传感器融合研究所要解决的主要问题。目前已有大量的融合算法,它们都存在各自的优缺点,需要通过合理的融合结构将这些算法组合在一起,使其扬长避短,构成更加有效的融合方法。
另外,多传感器融合还将面临一个难题,那就是动态与未知环境下的融合问题,这无疑会对融合方法提出更高的要求。这不仅需要性能更好的融合算法,而且需要更加灵活的融合结构,提高融合系统的自适应性和鲁棒性。