数据通信的场景:长连接 OR 短连接
在实际场景中,我们如何使用Netty进行通信呢?大致有3种方式:
第一种,使用长连接通道不断开的形式进行通信,也就是服务器和客户端的通道一直处于开启的状态。如果服务器性能足够好,并且我们的客户端数量也比较少的情况下,是适合使用长连接的通道。
第二种,采用短连接方式,一次性批量提交数据,也就是我们会把数据保存在本地临时缓冲区或者临时表里。当达到数量时,就进行批量提交;或者通过定时任务轮询提交。这种情况是有弊端的,就是无法做到实时传输。如果应用程序对实时性要求不高,可以考虑使用。
第三种,采用一种特殊的长连接。特殊在哪里呢?在指定的某一时间之内,服务器与某台客户端没有任何通信,则断开连接,如果断开连接后,客户端又需要向服务器发送请求,那么再次建立连接。这里有点CachedThreadPool的味道。
本篇博客将采用Netty来实现第三种方式的数据通信,接下来我们一起来看看吧~
Netty数据通信代码实例
请求消息对象
package day3;
import java.io.Serializable;
public class Request implements Serializable{
private static final long SerialVersionUID = 1L;
private String id ;
private String name ;
private String requestMessage ;
public String getId() {
return id;
}
public void setId(String id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public String getRequestMessage() {
return requestMessage;
}
public void setRequestMessage(String requestMessage) {
this.requestMessage = requestMessage;
}
}
响应消息对象
package day3;
import java.io.Serializable;
public class Response implements Serializable{
private static final long serialVersionUID = 1L;
private String id;
private String name;
private String responseMessage;
public String getId() {
return id;
}
public void setId(String id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public String getResponseMessage() {
return responseMessage;
}
public void setResponseMessage(String responseMessage) {
this.responseMessage = responseMessage;
}
}
编解码处理器
package day3;
import io.netty.handler.codec.marshalling.DefaultMarshallerProvider;
import io.netty.handler.codec.marshalling.DefaultUnmarshallerProvider;
import io.netty.handler.codec.marshalling.MarshallerProvider;
import io.netty.handler.codec.marshalling.MarshallingDecoder;
import io.netty.handler.codec.marshalling.MarshallingEncoder;
import io.netty.handler.codec.marshalling.UnmarshallerProvider;
import org.jboss.marshalling.MarshallerFactory;
import org.jboss.marshalling.Marshalling;
import org.jboss.marshalling.MarshallingConfiguration;
/**
* Marshalling工厂
*/
public final class MarshallingCodeCFactory {
/**
* 创建Jboss Marshalling×××MarshallingDecoder
* @return MarshallingDecoder
*/
public static MarshallingDecoder buildMarshallingDecoder() {
//首先通过Marshalling工具类的精通方法获取Marshalling实例对象 参数serial标识创建的是java序列化工厂对象。
final MarshallerFactory marshallerFactory = Marshalling.getProvidedMarshallerFactory("serial");
//创建了MarshallingConfiguration对象,配置了版本号为5
final MarshallingConfiguration configuration = new MarshallingConfiguration();
configuration.setVersion(5);
//根据marshallerFactory和configuration创建provider
UnmarshallerProvider provider = new DefaultUnmarshallerProvider(marshallerFactory, configuration);
//构建Netty的MarshallingDecoder对象,俩个参数分别为provider和单个消息序列化后的最大长度
MarshallingDecoder decoder = new MarshallingDecoder(provider, 1024);
return decoder;
}
/**
* 创建Jboss Marshalling编码器MarshallingEncoder
* @return MarshallingEncoder
*/
public static MarshallingEncoder buildMarshallingEncoder() {
final MarshallerFactory marshallerFactory = Marshalling.getProvidedMarshallerFactory("serial");
final MarshallingConfiguration configuration = new MarshallingConfiguration();
configuration.setVersion(5);
MarshallerProvider provider = new DefaultMarshallerProvider(marshallerFactory, configuration);
//构建Netty的MarshallingEncoder对象,MarshallingEncoder用于实现序列化接口的POJO对象序列化为二进制数组
MarshallingEncoder encoder = new MarshallingEncoder(provider);
return encoder;
}
}
注意,在上一篇博客《Netty实践(二):TCP拆包、粘包问题》中,我们是自己继承ByteToMessageDecoder、MessageToByteEncoder来实现ByteBuff与消息对象的转化的,其实这是有点麻烦的。在实际中,我们完全可以利用相关序列化框架(JBoss Marshlling/Protobuf/Kryo/MessagePack)来帮助我们快速完成编解码,这里我使用的是JBoss Marshalling(jboss-marshalling-1.3.0.CR9.jar+jboss-marshalling-serial-1.3.0.CR9.jar)。具体来说,客户端和服务端交互的消息对象只需要实现JDK默认的序列化接口,同时利用JBoss Marshalling 生成编码器和×××,用于后续Client/Server端即可。
Client Handler
package day3;
import io.netty.channel.ChannelHandlerAdapter;
import io.netty.channel.ChannelHandlerContext;
import io.netty.util.ReferenceCountUtil;
public class ClientHandler extends ChannelHandlerAdapter{
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
try {
Response resp = (Response)msg;
System.out.println("Client : " + resp.getId() + ", " + resp.getName() + ", " + resp.getResponseMessage());
} finally {
ReferenceCountUtil.release(msg);
}
}
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
ctx.close();
}
}
在这里可以清楚的看到,我们直接将Object转化成了自定义消息响应对象,可见JBoss Marshalling与Netty结合后,编解码是如此简单。
Client
package day3;
import io.netty.bootstrap.Bootstrap;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.EventLoopGroup;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioSocketChannel;
import io.netty.handler.logging.LogLevel;
import io.netty.handler.logging.LoggingHandler;
import io.netty.handler.timeout.ReadTimeoutHandler;
import java.util.concurrent.TimeUnit;
/**
*
*/
public class Client {
private static class SingletonHolder {
static final Client instance = new Client();
}
public static Client getInstance(){
return SingletonHolder.instance;
}
private EventLoopGroup group;
private Bootstrap b;
//通过ChannelFuture实现读写操作
private ChannelFuture cf ;
private Client(){
group = new NioEventLoopGroup();
b = new Bootstrap();
b.group(group)
.channel(NioSocketChannel.class)
.handler(new LoggingHandler(LogLevel.INFO))
.handler(new ChannelInitializer<SocketChannel>() {
@Override
protected void initChannel(SocketChannel sc) throws Exception {
sc.pipeline().addLast(MarshallingCodeCFactory.buildMarshallingDecoder());
sc.pipeline().addLast(MarshallingCodeCFactory.buildMarshallingEncoder());
//超时handler(当服务器端与客户端在指定时间以上没有任何进行通信,则会关闭相应的通道,主要为减小服务端资源占用)
sc.pipeline().addLast(new ReadTimeoutHandler(3));
sc.pipeline().addLast(new ClientHandler());
}
});
}
public void connect(){
try {
this.cf = b.connect("127.0.0.1", 8765).sync();
System.out.println("远程服务器已经连接, 可以进行数据交换..");
} catch (Exception e) {
e.printStackTrace();
}
}
//这里是通道关闭,再次建立连接的核心代码
public ChannelFuture getChannelFuture(){
if(this.cf == null){
this.connect();
}
if(!this.cf.channel().isActive()){
this.connect();
}
return this.cf;
}
public static void main(String[] args) throws Exception{
final Client c = Client.getInstance();
//注意client好像没有调用connect()方法进行连接,但是实际上在下面的代码中做了
ChannelFuture cf = c.getChannelFuture();
for(int i = 1; i <= 3; i++ ){
Request request = new Request();
request.setId("" + i);
request.setName("pro" + i);
request.setRequestMessage("数据信息" + i);
cf.channel().writeAndFlush(request);
TimeUnit.SECONDS.sleep(4);
}
cf.channel().closeFuture().sync();
//通道关闭后,通过另一个线程模拟客户端再次建立连接发送请求
new Thread(new Runnable() {
@Override
public void run() {
try {
System.out.println("进入子线程...");
ChannelFuture cf = c.getChannelFuture();
System.out.println(cf.channel().isActive());
System.out.println(cf.channel().isOpen());
//再次发送数据
Request request = new Request();
request.setId("" + 4);
request.setName("pro" + 4);
request.setRequestMessage("数据信息" + 4);
cf.channel().writeAndFlush(request);
cf.channel().closeFuture().sync();
System.out.println("子线程结束...");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}).start();
System.out.println("断开连接,主线程结束..");
}
}
这里对Client进行了初步的封装,采用静态内部类实现单例。
Client的Handler不仅仅有Marshalling的编×××,还加入了Netty自带的ReadTimeoutHandler,这是客户端与服务端一段时间没有通信就断开连接的依据。从这里也看到Netty的强大之处了,通过提供一些预定义的Handler让你的代码变得简单,只需要专注于业务实现即可。客户端超时断开通道后,如何再次建立连接进行通信呢?通过getChannelFuture()你会知道。
客户端代码模拟了一个线程通信超时,关闭通道后,另一个线程与服务器端再次通信。
Server Handler
package day3;
import io.netty.channel.ChannelHandlerAdapter;
import io.netty.channel.ChannelHandlerContext;
public class ServerHandler extends ChannelHandlerAdapter{
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
Request request = (Request)msg;
System.out.println("Server : " + request.getId() + ", " + request.getName() + ", " + request.getRequestMessage());
Response response = new Response();
response.setId(request.getId());
response.setName("response" + request.getId());
response.setResponseMessage("响应内容" + request.getId());
ctx.writeAndFlush(response);//.addListener(ChannelFutureListener.CLOSE);
}
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
ctx.close();
}
}
Server
package day3;
import io.netty.bootstrap.ServerBootstrap;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.ChannelOption;
import io.netty.channel.EventLoopGroup;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioServerSocketChannel;
import io.netty.handler.logging.LogLevel;
import io.netty.handler.logging.LoggingHandler;
import io.netty.handler.timeout.ReadTimeoutHandler;
public class Server {
public static void main(String[] args) throws Exception{
EventLoopGroup pGroup = new NioEventLoopGroup();
EventLoopGroup cGroup = new NioEventLoopGroup();
ServerBootstrap b = new ServerBootstrap();
b.group(pGroup, cGroup)
.channel(NioServerSocketChannel.class)
.option(ChannelOption.SO_BACKLOG, 1024)
//设置日志
.handler(new LoggingHandler(LogLevel.INFO))
.childHandler(new ChannelInitializer<SocketChannel>() {
protected void initChannel(SocketChannel sc) throws Exception {
sc.pipeline().addLast(MarshallingCodeCFactory.buildMarshallingDecoder());
sc.pipeline().addLast(MarshallingCodeCFactory.buildMarshallingEncoder());
sc.pipeline().addLast(new ReadTimeoutHandler(3));
sc.pipeline().addLast(new ServerHandler());
}
});
ChannelFuture cf = b.bind(8765).sync();
cf.channel().closeFuture().sync();
pGroup.shutdownGracefully();
cGroup.shutdownGracefully();
}
}
运行结果
说明:由于客户端一开始是发送3条消息给服务端,但是每条消息发送间隔4S,由于超时设置为3S,于是发送第一条消息后,通道便断开连接。接下来,客户端又启动了一个线程再次与服务端通信。
https://blog.51cto.com/zhangfengzhe/1892045