我们前一阵子参加了在旧金山举办的Dato数据科学峰会。来自业界和学界的千余名数据科学研究人员在大会上对数据科学、机器学习和预测应用方面的最新发展进行了交流和探讨。
以下是大会中讨论的数据科学家在未来可能使用的八个Python工具。
SFrame和SGraph
峰会上的一个重磅消息是Dato将在BSD协议下开源SFrame和SGraph。SFrame(Scaleable Data Frame)是一个为大数据处理优化内存和性能的数据框(DataFrame)结构。SGraph是一个类似的概念,但代表的不是数据框而是图。这两个数 据结构的好处是即便数据量太大难以全部加载到内存中,数据科学家依然可以进行分析。
这一消息无论对Dato还是对Python社区来说都是一个分水岭。它显示了Dato对支持开源Python数据生态圈的诚意。在此之前有一种认 识就是Dato提供的免费版本只是将数据科学家捆绑在自家的平台最终还是得收费,因为Dato确实有自己的商业产品。但从这次开源我们看到Dato并不打 算耍这种小把戏。我们也希望其他开发者(没错,Pandas说的就是你)能够抛开收费的顾虑来使用SFrame和SGraph以便打破内存的限制。
Bokeh是一个不需服务器就可以在浏览器中实现互动可视化的Python库。它可以处理非常大的数据集而且速度很快也能嵌入在网页当中。想要快速方便地创建互动图表和数据应用的话这个库非常有用。
Bokeh对处理大型数据集时的性能问题着墨颇多。还有另外一点就是开发这些互动图表只需要Python一种语言即可。
Dask是一款主要针对单机的Python调度工具。它能帮助你将数据分成块并负责并行处理的调度工作。Dask是用纯Python写成的,它自己也使用了一些开源的Python库。
Dask有两种用法:普通用户主要使用Dask提供的集合类型,用法就和NumPy跟Pandas的差不多,但Dask内部会生成任务图。Dask开发人员则可以直接与Dask任务图打交道因为Dask任务图并不依赖于它提供的集合类型。
现在Python生态圈中有很多库看起来功能都差不多比如说Blaze、Dask和Numba,但其实应该用在数据处理的不同层面上,做一个类比的话Blaze就相当于数据库中的查询优化器,而Dask则相当于执行查询的引擎。
下面关于Python的文章您也可能喜欢,不妨看看:
Python 的详细介绍:请点这里
Python 的下载地址:请点这里