一、重入锁
重入锁ReentrantLock:就是支持重进入的锁,它表示该锁能够支持一个线程对资源的重复加锁。除此之外,该锁的还支持获取锁时的公平和非公平性选择。
Mutex是一个不支持重进入的锁。而synchronized关键字隐式的支持重进入,比如一个synchronized修饰的递归方法,在方法执行时,执行线程在获取了锁之后仍能连续多次地获得该锁,而不像Mutex由于获取了锁,而在下一次获取锁时出现阻塞自己的情况。
这里提到一个锁获取的公平性问题,如果在绝对时间上,先对锁进行获取的请求一定先被满足,那么这个锁是公平的,反之,是不公平的。公平的获取锁,也就是等待时间最长的线程最优先获取锁,也可以说锁获取是顺序的。ReentrantLock提供了一个构造函数,能够控制锁是否是公平的。
1、实现重进入
重进入是指任意线程在获取到锁之后能够再次获取该锁而不会被锁所阻塞,该特性的实现需要解决以下两个问题:
1)线程再次获取锁。锁需要去识别获取锁的线程是否为当前占据锁的线程,如果是,则再次成功获取。
2)锁的最终释放。线程重复n次获取了锁,随后在第n次释放该锁后,其他线程能够获取到该锁。锁的最终释放要求锁对于获取进行计数自增,计数表示当前锁被重复获取的次数,而锁被释放时,计数自减,当计数等于0时表示锁已经成功释放。
ReentrantLock是通过组合自定义同步器来实现锁的获取与释放。以非公平性(默认的)实现为例,获取同步状态:
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();// 获取状态
if (c == 0) { // 如果状态为空则释放了所有锁,当前新的线程可索取锁
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
// 2 如果当前线程是那个拿到锁的线程,就直接进入,并且给他的状态值自增
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
该方法增加了再次获取同步状态的处理逻辑:通过判断当前线程是否为获取锁的线程来决定获取操作是否成功,如果是获取锁的线程再次请求,则将同步状态值进行增加并返回true,表示获取同步状态成功。
成功获得锁的线程再次获得锁,只是增加了同步状态值,这也就是要求ReentrantLock在释放同步状态时减少同步状态值
// 上面因为当前拥有锁的再次进入会增加state值大小,所以需要在释放的时候进行处理
protected final boolean tryRelease(int releases) {
int c = getState() - releases; //1 state减去释放的值
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) { //如果当前state=0,那就是真的释放操作,并且使用setExclusiveOwnerThread释放
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
如果该锁被获取了n次,那么前(n-1)次tryRelease(int releases)方法必须返回false,而只有同步状态完全释放了,才能返回true。可以看到,该方法将同步状态是否为0作为最终释放的条件,当同步状态为0时,将占有线程设置为null,并返回true,表示释放成功。
2、公平与非公平获取锁的区别
公平性锁每次都是从同步队列中的第一个节点获取到锁,而非公平性锁出现了一个线程连续获取锁的情况。公平性锁保证了锁的获取按照FIFO原则,而代价是进行大量的线程切换。非公平性锁虽然可能造成线程“饥饿”,但极少的线程切换,保证了其更大的吞吐量。
看一下公平锁的tryAcquire( )方法:
final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();// 获取状态
if (c == 0) { // 如果状态为空则释放了所有锁,当前新的线程可索取锁
if (!hasQueuedPredecessors() && compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
// 2 如果当前线程是那个拿到锁的线程,就直接进入,并且给他的状态值自增
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
该方法与nonfairTryAcquire(int acquires)比较,就多了一个判断条件 !hasQueuedPredecessors(),即加入了同步队列中当前节点是否当前去节点的判断,如果返回true,表示有线程比当前线程更早请求获得锁,所以需要等待前驱线程获取并释放锁后才能继续获得锁。 所以公平性锁每次都是从同步队列中的第一个节点获取到锁。。
而非公平性锁出现了一个线程连续获取锁的情况,回顾nonfairTryAcquire(int acquires)方法,当一个线程请求锁时,只要获取了同步状态即成功获取锁。在这个前提下,刚释放锁的线程再次获取同步状态的几率会非常大,使得其他线程只能在同步队列中等待。
二、读写锁
前面说到的Mutex和ReentrantLock,都是排他锁,即这些锁在同一时刻只允许有一个线程访问,而读写锁在同一时刻可以允许多个读线程访问,但是在写线程访问时,所有的读线程和其他写线程均被阻塞。读写锁维护了一对锁,一个读锁和一个写锁,通过分离读锁和写锁,使得并发性相比一般的排他锁有了很大提升。
读写锁能够简化读写交互场景的编程方式。适用场景是读多于写的。在读多于写的情况写,它允许多个线程一起读,所以读写锁可以提供比排它锁更好的并发性和吞吐量。java并发包中提供读写锁的实现是ReentrantReadWriteLock。
2、读写锁的接口与示例
ReadWriteLock仅定义了获取读锁和写锁的两个方法,即readLock()和writeLock()方法,而其实现ReentrantReadWriteLock,除了接口方法之外,还提供了一些便于外界监控其内部工作状态的方法,这些方法以及描述如表2所示。
接下来通过一个缓存示例说明读写锁的使用方式:
public class Cache {
static Map<String, Object> map = new HashMap<String, Object>();
static ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
static Lock r = rwl.readLock();
static Lock w = rwl.writeLock();
// 获取一个key对应的value
public static final Object get(String key) {
r.lock();
try {
return map.get(key);
} finally {
r.unlock();
}
}
// 设置key对应的value,并返回旧有的value
public static final Object put(String key, Object value) {
w.lock();
try {
return map.put(key, value);
} finally {
w.unlock();
}
}
// 清空所有的内容
public static final void clear() {
w.lock();
try {
map.clear();
} finally {
w.unlock();
}
}
}
上述示例中,Cache组合了一个非线程安全的HashMap作为缓存的实现,同时使用读写锁的读锁和写锁来保证Cache是线程安全的。在读操作get(String key)方法中,需要获取读锁,这使得并发访问该方法时不会被阻塞。写操作put(String key, Object value)和clear()方法,在更新HashMap时必须提前获取写锁,当写锁被获取后,其他线程对于读锁和写锁的获取均被阻塞,而只有写锁被释放之后,其他读写操作才能继续。Cache使用读写锁提升读操作并发性,也保证每次写操作对所有的读写操作的可见性,同时简化了编程方式。
3、读写锁的实现分析
(1)读写状态的设计
读写锁同样依赖自定义同步器来实现同步功能,而读写状态就是其同步器的同步状态。回想ReentrantLock中自定义同步器的实现,同步状态表示锁被一个线程重复获取的次数,而读写锁的自定义同步器需要在同步状态(一个整型变量)上维护多个读线程和一个写线程的状态,使得该状态的设计成为读写锁实现的关键。
如果在一个整型变量上维护多种状态,就一定需要“按位切割使用”这个变量,读写锁是将变量切分成了两个部分,高16位表示读,低16位表示写,划分方式如图所示。
当前同步状态表示一个线程已经获取了写锁,且重进入了两次,同时也连续获取了两次读锁。读写锁是如何迅速的确定读和写各自的状态呢?答案是通过位运算。假设当前同步状态值为S,写状态等于 S & 0x0000FFFF(将高16位全部抹去),读状态等于 S >>> 16(无符号补0右移16位)。当写状态增加1时,等于S + 1,当读状态增加1时,等于S + (1 << 16),也就是S + 0x00010000。
根据状态的划分能得出一个推论:假设当前同步状态值为S,S不等于0时,当写状态(S & 0x0000FFFF)等于0时,则读状态(S >>> 16)大于0,即读锁已被获取。
(2)、写锁的获取与释放
写锁是一个支持重进入的排它锁。如果当前线程已经获取了写锁,则增加写状态。如果当前线程在获取写锁时,读锁已经被获取(读状态不为0)或者该线程不是已经获取写锁的线程,则当前线程进入等待状态,获取写锁的代码如下:
protected final boolean tryAcquire(int acquires) {
Thread current = Thread.currentThread();
int c = getState();
int w = exclusiveCount(c);
if (c != 0) {
// 存在读锁或者当前获取线程不是已经获取写锁的线程
if (w == 0 || current != getExclusiveOwnerThread())
return false;
if (w + exclusiveCount(acquires) > MAX_COUNT)
throw new Error("Maximum lock count exceeded");
setState(c + acquires);
return true;
}
if (writerShouldBlock() || !compareAndSetState(c, c + acquires)) {
return false;
}
setExclusiveOwnerThread(current);
return true;
}
该方法除了重入条件(当前线程是获取了写锁的线程)之外,增加了一个读锁是否存在的判断。如果存在读锁,则写锁不能被获取,原因在于:读写锁要确保写锁的操作对读锁可见,如果允许读锁在已被获取的情况下对写锁的获取,那么正在运行的其他读线程就无法感知到当前写线程的操作。因此只有等待其他读线程都释放了读锁,写锁才能被当前线程所获取,而写锁一旦被获取,则其他读写线程的后续访问均被阻塞。
写锁的释放与ReentrantLock的释放过程基本类似,每次释放均减少写状态,当写状态为0时表示写锁已被释放,从而等待的读写线程能够继续访问读写锁,同时前次写线程的修改对后续读写线程可见。
(3)、读锁的获取与释放
读锁是一个支持重进入的共享锁,它能够被多个线程同时获取,在没有其他写线程访问(或者写状态为0)时,读锁总会成功的被获取,而所做的也只是(线程安全的)增加读状态。如果当前线程已经获取了读锁,则增加读状态。如果当前线程在获取读锁时,写锁已被其他线程获取,则进入等待状态。获取读锁的实现从Java 5到Java 6变得复杂许多,主要原因是新增了一些功能,比如: getReadHoldCount()方法,返回当前线程获取读锁的次数。读状态是所有线程获取读锁次数的总和,而每个线程各自获取读锁的次数只能选择保存在ThreadLocal中,由线程自身维护,这使获取读锁的实现变得复杂。因此,这里将获取读锁的代码做了删减,保留必要的部分,代码如下所示。
protected final int tryAcquireShared(int unused) {
for (;;) {
int c = getState();
int nextc = c + (1 << 16);
if (nextc < c)
throw new Error("Maximum lock count exceeded");
if (exclusiveCount(c) != 0 && owner != Thread.currentThread())
return -1;
if (compareAndSetState(c, nextc))
return 1;
}
}
在tryAcquireShared(int unused)方法中,如果其他线程已经获取了写锁,则当前线程获取读锁失败,进入等待状态。如果当前线程获取了写锁或者写锁未被获取,则当前线程(线程安全,依靠CAS保证)增加读状态,成功获取读锁。
读锁的每次释放均(线程安全的,可能有多个读线程同时释放读锁)减少读状态,减少的值是(1 << 16)。
(4)、锁降级
锁降级指的是写锁降级成为读锁。如果当前线程拥有写锁,然后将其释放,最后再获取读锁,这种分段完成的过程不能称之为锁降级。锁降级是指继续拥有(当前拥有的)写锁,再获取到读锁,随后释放(先前拥有的)写锁的过程。
接下来看一个锁降级的示例:因为数据不常变化,所以多个线程可以并发的进行数据处理,当数据变更后,当前线程如果感知到数据变化,则进行数据的准备工作,同时其他处理线程被阻塞,直到当前线程完成数据的准备工作,示例代码。
public void processData() {
readLock.lock();
if (!update) {
// 必须先释放读锁
readLock.unlock();
// 锁降级从写锁获取到开始
writeLock.lock();
try {
if (!update) {
// 准备数据的流程(略)
update = true;
}
readLock.lock();
} finally {
writeLock.unlock();
}
// 锁降级完成,写锁降级为读锁
}
try {
// 使用数据的流程(略)
} finally {
readLock.unlock();
}
}
上述示例中,当数据发生变更后,update变量(布尔类型且volatile修饰)被设置为false,此时所有访问processData()方法的线程都能够感知到变化,但只有一个线程能够获取到写锁,而其他线程会被阻塞在读锁和写锁的lock()方法上。当前程获取写锁完成数据准备之后,再获取读锁,随后释放写锁,完成锁降级。
锁降级中读锁的获取是否必要呢?答案是必要的。主要原因是保证数据的可见性,如果当前线程不获取读锁而是直接释放写锁,假设此刻另一个线程(记作线程T)获取了写锁并修改了数据,则当前线程无法感知线程T的数据更新。如果当前线程获取读锁,即遵循锁降级的步骤,则线程T将会被阻塞,直到当前线程使用数据并释放读锁之后,线程T才能获取写锁进行数据更新。
RentrantReadWriteLock不支持锁升级(把持读锁、获取写锁,最后释放读锁的过程),它是把持写锁,获取读锁,释放写锁,释放读锁。原因也是保证数据可见性,如果读锁已被多个线程获取,其中任意线程成功获取了写锁并更新了数据,则其更新对其他获取到读锁的线程不可见。