项目方案: Flink on YARN SQL 执行
1. 简介
Flink on YARN 是 Apache Flink 的一种运行模式,它能够在 Hadoop YARN 集群上运行 Flink 应用程序。Flink on YARN 提供了一种强大的方式来执行 Flink SQL 查询,通过将 SQL 语句转换为 Flink DataStream 或 DataSet API,实现对流数据或批量数据的处理。本文将介绍如何通过 Flink on YARN 来执行 SQL 查询的方案。
2. 安装与配置
首先需要安装配置好 Flink 和 Hadoop YARN 环境。详细的安装与配置步骤可以参考官方文档。
3. 编写 SQL 查询代码
3.1 创建 Flink SQL 环境
我们需要创建一个 Flink SQL 环境,用于执行查询。以下是创建 Flink SQL 环境的示例代码:
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
3.2 注册输入表
我们需要将输入数据注册为一个表,以便能够在 SQL 中使用。以下是注册输入表的示例代码:
tableEnv.executeSql("CREATE TABLE orders (\n" +
" order_id INT,\n" +
" product_id INT,\n" +
" order_amount DOUBLE\n" +
") WITH (\n" +
" 'connector' = 'kafka',\n" +
" 'topic' = 'orders',\n" +
" 'properties.bootstrap.servers' = 'localhost:9092',\n" +
" 'format' = 'json'\n" +
")");
3.3 执行 SQL 查询
我们可以使用 Flink SQL 语法来编写查询语句,并通过 Flink SQL 环境来执行查询。以下是执行 SQL 查询的示例代码:
tableEnv.executeSql("CREATE VIEW popular_products AS\n" +
"SELECT product_id, SUM(order_amount) as total_amount\n" +
"FROM orders\n" +
"GROUP BY product_id\n" +
"HAVING SUM(order_amount) > 1000");
tableEnv.executeSql("SELECT * FROM popular_products").print();
4. 提交 Flink on YARN 任务
4.1 编写 Flink YARN 客户端代码
我们需要编写一个客户端程序,用于将 Flink SQL 代码提交给 YARN 集群执行。以下是一个简单的客户端代码示例:
import org.apache.flink.client.deployment.ClusterSpecification;
import org.apache.flink.client.program.ClusterClient;
import org.apache.flink.client.program.PackagedProgram;
import org.apache.flink.client.program.ProgramInvocationException;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.configuration.GlobalConfiguration;
import org.apache.flink.runtime.jobgraph.SavepointRestoreSettings;
import org.apache.flink.yarn.YarnClusterDescriptor;
public class FlinkYarnClient {
public static void main(String[] args) throws Exception {
// 创建 YARN 集群描述符
Configuration globalConfig = GlobalConfiguration.loadConfiguration();
YarnClusterDescriptor clusterDescriptor = new YarnClusterDescriptor(globalConfig);
// 配置 YARN 集群描述符
clusterDescriptor.setName("Flink-on-YARN");
clusterDescriptor.setLocalJarPath(new Path("/path/to/flink-on-yarn.jar"));
clusterDescriptor.setFlinkConfiguration(globalConfig);
clusterDescriptor.setConfiguration(getYarnConfiguration());
// 创建 Flink 程序包
PackagedProgram program = new PackagedProgram(new File("/path/to/flink-on-yarn.jar"));
// 创建集群规格
ClusterSpecification clusterSpecification = new ClusterSpecification.ClusterSpecificationBuilder()
.setMasterMemoryMB(1024)
.setTaskManagerMemoryMB(2048)
.setNumberTaskManagers(2)
.setSlotsPerTaskManager(2)
.createClusterSpecification();
try {
// 提交 Flink 程序到 YARN 集群
ClusterClient<?> clusterClient = clusterDescriptor.deployJobCluster(
clusterSpecification,
program,
false,
SavepointRestoreSettings.none());
// 等待任务完成
clusterClient.waitForClusterToBeReady();
clusterClient.shutdown();
} catch (ProgramInvocationException e) {
e.printStackTrace();
}
}
private static org.apache.hadoop.conf.Configuration getYarnConfiguration() {
org.apache.hadoop.conf.Configuration yarnConf = new org.apache.hadoop.conf.Configuration();
yarnConf.addResource(new Path
















