模糊层次分析法 Python 代码实现指南

1. 流程图

flowchart TD
    Start((开始))
    Input((输入数据))
    Step1((步骤1:构建判断矩阵))
    Step2((步骤2:计算权重))
    Step3((步骤3:一致性检验))
    Output((输出最终结果))
    
    Start --> Input
    Input --> Step1
    Step1 --> Step2
    Step2 --> Step3
    Step3 --> Output

2. 类图

classDiagram
    class FuzzyAHP {
        - calculate_matrix()
        - calculate_weight()
        - consistency_check()
    }

3. 详细步骤及代码实现

步骤一:构建判断矩阵

# 导入必要的库
import numpy as np

# 构建判断矩阵
def calculate_matrix(criteria):
    n = len(criteria)
    matrix = np.zeros((n, n))
    for i in range(n):
        for j in range(n):
            if i == j:
                continue
            matrix[i][j] = float(input(f"请输入{criteria[i]}相对于{criteria[j]}的重要性比例:"))
            matrix[j][i] = 1 / matrix[i][j]
    return matrix

步骤二:计算权重

# 计算权重
def calculate_weight(matrix):
    n = len(matrix)
    weight = np.zeros(n)
    for i in range(n):
        weight[i] = np.mean(matrix[i])
    weight = weight / sum(weight)
    return weight

步骤三:一致性检验

# 一致性检验
def consistency_check(matrix, weight):
    n = len(matrix)
    eigenvalue = np.dot(matrix, weight)
    consistency_index = (eigenvalue - n) / (n - 1)
    random_index = {1: 0, 2: 0, 3: 0.58, 4: 0.90, 5: 1.12, 6: 1.24, 7: 1.32, 8: 1.41, 9: 1.45}
    lambda_max = sum(eigenvalue)
    consistency_ratio = consistency_index / random_index[n]
    if consistency_ratio < 0.1:
        return True
    else:
        return False

结尾

通过上述代码和步骤,你可以实现模糊层次分析法在 Python 中的应用。记得在实践中不断尝试,加深理解,提升自己的编程能力。祝你成功!