Flink提交YARN任务
Apache Flink是一个分布式流处理框架,可以在集群上运行大规模的数据处理任务。在实际应用中,我们常常需要将Flink应用程序提交到YARN集群上运行,以充分利用集群的计算资源。本文将介绍如何使用Flink提交YARN任务,并提供相应的代码示例。
准备工作
在开始之前,确保你已经完成以下准备工作:
-
安装并配置好Flink和YARN。确保Flink和YARN集群正常运行,并且能够相互通信。
-
编写一个简单的Flink应用程序作为示例。下面是一个简单的WordCount示例代码:
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.utils.ParameterTool;
public class WordCount {
public static void main(String[] args) throws Exception {
final ParameterTool params = ParameterTool.fromArgs(args);
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
env.getConfig().setGlobalJobParameters(params);
DataSet<String> text = env.readTextFile(params.get("input"));
DataSet<Tuple2<String, Integer>> counts = text
.flatMap(new Tokenizer())
.groupBy(0)
.sum(1);
if (params.has("output")) {
counts.writeAsCsv(params.get("output"), "\n", " ");
env.execute("WordCount Example");
} else {
System.out.println("Printing result to stdout. Use --output to specify output path.");
counts.print();
}
}
public static final class Tokenizer implements FlatMapFunction<String, Tuple2<String, Integer>> {
@Override
public void flatMap(String value, Collector<Tuple2<String, Integer>> out) {
String[] words = value.toLowerCase().split("\\W+");
for (String word : words) {
if (word.length() > 0) {
out.collect(new Tuple2<>(word, 1));
}
}
}
}
}
提交YARN任务
下面是提交Flink应用程序到YARN集群的步骤:
- 创建一个YarnClusterDescriptor对象,并配置相关参数。下面是一个示例代码:
import org.apache.flink.api.common.JobExecutionResult;
import org.apache.flink.api.common.JobID;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.client.program.ClusterClient;
import org.apache.flink.client.program.PackagedProgram;
import org.apache.flink.client.program.ProgramInvocationException;
import org.apache.flink.client.program.rest.RestClusterClient;
import org.apache.flink.client.program.rest.RestClusterClientConfiguration;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.configuration.JobManagerOptions;
import org.apache.flink.yarn.YarnClusterDescriptor;
import org.apache.flink.yarn.configuration.YarnConfigOptions;
import org.apache.hadoop.yarn.api.records.ApplicationId;
public class YarnJobSubmitter {
public static void main(String[] args) throws Exception {
final ParameterTool params = ParameterTool.fromArgs(args);
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
env.getConfig().setGlobalJobParameters(params);
String yarnConfDir = "/path/to/yarn/conf"; // YARN的配置文件目录
String flinkJarPath = "/path/to/flink.jar"; // Flink应用程序的jar包路径
String mainClass = "com.example.WordCount"; // Flink应用程序的主类
Configuration flinkConfig = new Configuration();
flinkConfig.setString(JobManagerOptions.ADDRESS, "localhost"); // Flink JobManager的地址
flinkConfig.setInteger(JobManagerOptions.PORT, 8081); // Flink JobManager的端口
YarnClusterDescriptor yarnClusterDescriptor = new YarnClusterDescriptor(
flinkConfig,
yarnConfDir,
flinkJarPath,
"yarn-session",
1 // 任务的并行度
);
yarnClusterDescriptor.setFlinkConfiguration(env.getConfig());
// 提交应用程序到YARN集群
ClusterClient<ApplicationId> clusterClient = yarnClusterDescriptor.deploy();
RestClusterClient<ApplicationId> restClusterClient = new RestClusterClient<>(
new RestClusterClientConfiguration.Builder()
.withRestServerEndpoint("localhost", 8081) // Flink REST服务的地址和端口
.build(),
clusterClient.getClusterId()
);
PackagedProgram packagedProgram = new PackagedProgram(
new File(flinkJarPath),
mainClass,
new String[] {params.get("input"), params.get("output")}
);
JobID jobId;
try {
jobId = restClusterClient.run(packagedProgram, 1);
} catch (ProgramInvocationException e) {