思路:其实就是求最大值...



#include<bits/stdc++.h>
using namespace std;

void solve()
{
    int n;scanf("%d",&n);
    int ans=0,x;
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&x);
        ans=max(ans,x);
    }
    printf("%d\n",ans);
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)solve();
    return 0;
}




Problem Description


A={a1,a2,⋯,an}, which has  n elements and obviously  (2n−1) non-empty subsets.

For each subset  B={b1,b2,⋯,bm}(1≤m≤n) of  A, which has  m elements, zxa defined its value as  min(b1,b2,⋯,bm).

zxa is interested to know, assuming that  Sodd represents the sum of the values of the non-empty sets, in which each set  B is a subset of  A and the number of elements in  B is odd, and  Seven represents the sum of the values of the non-empty sets, in which each set  B is a subset of  A and the number of elements in  B is even, then what is the value of  |Sodd−Seven|, can you help him?


 



Input


T, represents there are  T test cases.

For each test case:

The first line contains an positive integer  n, represents the number of the set  A is  n.

The second line contains  n distinct positive integers, repersent the elements  a1,a2,⋯,an.

There is a blank between each integer with no other extra space in one line.

1≤T≤100,1≤n≤30,1≤ai≤109


 



Output


|Sodd−Seven|.


 



Sample Input


3 1 10 3 1 2 3 4 1 2 3 4


 



Sample Output


Hint