1、背景

在当前这个快速开发的环境下,很多时候我们的应用都是测试好好的,正式环境并发一高就一团糟。不了解并发相关参数,看不懂压测报告,是很多程序猿的基本状态。本文重点分享长事务以及长连接导致的并发排查和优化思路和示例。

长事务会导致长连接,长连接未必是因为长事务,因果关系先搞清楚。

主要相关技术:

  • SpringBoot: 2.5.12
  • mybatis-spring-boot-starter: 2.1.2
  • druid-spring-boot-starter: 1.2.9
  • mysql-connector-java: 8.0+
  • tomcat: 9.0.54

2、主要参数释义:

2.1 tomcat主要并发参数释义

server:
  port: 8080
  compression:
    enabled: true
  tomcat:
    accept-count: 511
    max-connections: 8192
    threads:
      max: 200
    basedir: /u01/app/base/logs/tomcat
    connection-timeout: 60000
    keep-alive-timeout: 60000

threads.max:表示服务器最大有多少个线程处理请求,默认200,实际上这个参数超过服务器核心数太多反而会降低服务器cpu处理速度,对于计算密集型和IO密集型应分开考虑设置该参数。

max-connections:表示服务器与客户端可以建立多少个连接数,即持有的连接数。tomcat缺省是8192个连接数,cpu未必有时间给你处理,但是可以保持连接。这个参数是客户感知型参数。

accept-count: 与服务器内核相关,是客户端传入给服务器内核,请求的backlog值,该值与服务器内核参数net.core.somaxconn取小后的值为最终起效的TCP内核全队列值。它表示在max-connections值达到预设的值后,服务器内核还能建立的连接数,这个连接保存在内核,还未被上层应用(tomcat)取走。该值在tomcat中默认是100,在Centos7.x版本中内核net.core.somaxconn是128。如果超过max-connections和accept-count总和,新的连接会被拒绝,即直接拒绝服务(直接返回connection refused)。

查看CentOS的net.core.somaxconn参数:sysctl -a|grep net.core.somaxconn

2.2 数据库连接池参数

datasource:
    type: com.alibaba.druid.pool.DruidDataSource
    druid:     
      driver-class-name: com.mysql.cj.jdbc.Driver
      #连接池属性
      initial-size: 5
      max-active: 140
      min-idle: 10
      # 配置获取连接等待超时的时间
      max-wait: 30000     
      connect-properties.slowSqlMillis: 2000

max-active: 数据库连接池数据连接最大数量,即连接池物理打开数据库的最大数量。这个参数一般开发人员都会错误的设置,首先这个值不是越大越好,最起码它得小于数据库本身配置的最大连接数,如果超过后再向数据库发起连接,就会在数据库层面抛出类似"too many connection"的错误。mysql数据库默认最大连接数为151。一般配置数据库连接池应用组件的时候,不要超过这个数,并且需要留一部分连接数给维护人员使用。

2.3 数据库连接数

上文2.2已经提到数据库连接数,它决定了数据库支持的最大并发数。

查看mysql的最大连接数:

show variables like '%max_connections%';

查看mysql目前的连接数:

show global status like 'Max_used_connections';

如果你的应用配置连接数超过数据库预设的最大数,并且客户端不断并发的发起数据库连接,连接池数量就会不断创建与数据库的物理连接,如果该连接是各种原因导致的数据库长连接(例如:长事务),那么一旦超过数据库的最大值,应用就会报连接数太多的错误。

3、测试程序

两个对外暴露的url:

  • 5000毫秒的长连接操作
  • 100毫秒的短连接操作

Controller:

@GetMapping("/slowGetAll")
    public Result<Object> slowGetAll(){
        return Result.ok(testUserService.queryAll());
    }

    @GetMapping("/fastGetAll")
    public Result<Object> fastGetAll(){
        return Result.ok(testUserService.fastGetAll());
    }

service: 向数据库里插入两个用户,并查询最后一个用户的信息,在两次insert操作中间加入一个耗时操作。

@Transactional(rollbackFor = Exception.class)
    @Override
    public List<TestUser> fastGetAll() {
        TestUser user1 = getTestUser("李四", "jerry");
        this.testUserDao.insert(user1);
        slowMethod(customProperties.getFastMillis());

        TestUser user2 = getTestUser("张三", "tom");
        this.testUserDao.insert(user2);

        return this.testUserDao.queryByBlurry(user2);
    }


    @Transactional(rollbackFor = Exception.class)
    @Override
    public List<TestUser> queryAll() {
        TestUser user1 = getTestUser("王五", "jack");
        this.testUserDao.insert(user1);
        slowMethod(customProperties.getSlowMillis());

        TestUser user2 = getTestUser("赵柳", "amy");
        this.testUserDao.insert(user2);

        return this.testUserDao.queryByBlurry(user2);
    }

    private void slowMethod(int milliseconds){
        try {
            int i = globalCount.incrementAndGet();
            System.out.println("slowMethod start -->"+i);
            Thread.sleep(milliseconds);
            System.out.println("slowMethod end -->"+i);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

注意,这里的长连接使用使用Thread.sleep实现,不是真正的数据库长事务。

4、jmeter测试

开启400线程,测试10轮,分两组:

  • 快速处理的短连接4000次。
  • 慢速处理的长连接4000次。

4.1、快速组

druid连接池主要结果分析:

指标


解释

事务时间分布

0,0,3735,265,0,0,0

事务运行时间分布,分布区间为[0-1 ms, 1-10 ms, 10-100 ms, 100-1 s, 1-10 s, 10-100 s, >100 s]

连接持有时间分布

0,0,0,3583,417,0,0,0

连接持有时间分布,分布区间为[0-1 ms, 1-10 ms, 10-100 ms, 100ms-1s, 1-10 s, 10-100 s, 100-1000 s, >1000 s]

在JMeter中的吞吐量为:305.4/second

4.2、慢速组

druid连接池主要结果分析:

指标


解释

事务时间分布

0,0,3599,401,0,0,0

事务运行时间分布,分布区间为[0-1 ms, 1-10 ms, 10-100 ms, 100-1 s, 1-10 s, 10-100 s, >100 s]

连接持有时间分布

0,0,0,0,4000,0,0,0

连接持有时间分布,分布区间为[0-1 ms, 1-10 ms, 10-100 ms, 100ms-1s, 1-10 s, 10-100 s, 100-1000 s, >1000 s]

在JMeter中的吞吐量为:26.3/second

4.3、对照分析

事务时间分布:非数据库操作的耗时对事务时间分布是没有影响的,快速组和慢速组分布区间基本相同。

连接持有时间分布:快速组大约90%的时间分布在100ms-1s,慢速组100%分布在1-10 s,符合预期的设置。

吞吐量:快速组比慢速组快了接近10倍。

小小结论:在慢速组中,虽然事务的分别时间较短,但是发起该事务的连接一直没有被释放,导致并发能力断崖式下降。

5、问题与优化

5.1、问题

在本次测试中,影响应用并发性能主要体现在长连接持有时间,当服务器处理某个请求耗时较长会导致并发能力直线下降,这个耗时可能会因为数据库长事务、长计算、或发起对外慢速同步的API请求等等原因导致。

5.2 、排查

通过druid monitor监控可以查看很多与数据库连接的参数和实际发生状态,本例中,主要需要找到事务时间分布和连接持有时间即可初步定位问题,然后通过SQL监控找到发生的SQL语句逐步排查定位到JAVA代码块,找到代码块一般都能分析出实际的问题。

5.3、核心

在整个应用生态中,最宝贵的资源就是数据库连接,数据库相关业务密集的系统中,首先需要保证尽可能少的持有数据库连接。所以才催生出数据库连接池这些技术。第二宝贵的是磁盘IO,所有对磁盘IO的操作尽可能少,所以催生出数据库索引、缓存等技术,对于需要直接操作磁盘IO的计算来说,能用顺序读或写,就不要用随机读或写。

5.4、调优

优化并发需从几个方面出发:

  1. 服务器本身的参数,比如CPU核数,高性能磁盘位置等,通过服务器参数对应设置前文所述的几个应用参数,比如服务器CPU核心数为16个,一般通用业务应用下,缺省的200个线程已经足够。
  2. 一旦确认服务器配置等基本的参数,并拍脑袋设置了一些应用参数后,就需要启动压测测试各参数配比下最好的服务器和应用性能。
  3. 确认你的业务系统是计算密集型还是IO密集型,针对性的编写测试用例。
  4. 最后确认业务系统乃至服务器的性能瓶颈链,输出整体性能报告。在实际生产中,一旦检测到实际并发与性能报告相差太大就可以启动排查程序。

6、优化实验

6.1 手动事务

代码优化背景和目标:

  1. 首先长连接的事实不可改变,因为有可能这个计算或调用就是需要耗费5秒的时间,如果能减少,则属于另外的优化逻辑;
  2. 在这个背景下,我们改善的目标是减少数据库连接的持有时间;
  3. 从实例代码里,真正需要事务的操作是两个insert,slowMethod和query查询都不需要,所以启动手动事务就可以减少数据库连接的持有时间。
  4. 使用Springboot的手动事务模板。

6.2、优化第一组测试

代码优化如下:

@Resource
    private TransactionTemplate transactionTemplate;

	@Override
    public List<TestUser> optimizedGetAll() {
        slowMethod(customProperties.getSlowMillis());
        TestUser user1 = getTestUser("王五", "jack");
        TestUser user2 = getTestUser("赵柳", "amy");

        transactionTemplate.execute(status -> {
            this.testUserDao.insert(user1);
            this.testUserDao.insert(user2);
            return Boolean.TRUE;
        });

        return this.testUserDao.queryByBlurry(user2);
    }

druid连接池主要结果分析:

指标


解释

事务时间分布

0,0,2295,1626,79,0,0

事务运行时间分布,分布区间为[0-1 ms, 1-10 ms, 10-100 ms, 100-1 s, 1-10 s, 10-100 s, >100 s]

连接持有时间分布

2307,1041,2735,1838,79,0,0,0

连接持有时间分布,分布区间为[0-1 ms, 1-10 ms, 10-100 ms, 100ms-1s, 1-10 s, 10-100 s, 100-1000 s, >1000 s]

在JMeter中的吞吐量为:37.3/second

测试分析:

  1. 首先连接持有时间大幅度下降,原先慢速组100%的样本数据在1-10 s区间,现在改区间只有0.98%的数据。
  2. 我们发现连接持有时间分布样本数据总和是8000,而不是原本慢速组的4000,并且在0-1 ms, 1-10 ms, 10-100 ms, 100ms-1s都有分布,说明一个问题,query查询单独占用了数据库连接。
  3. 我们知道数据库连接是宝贵资源,query单独占用连接是否有问题?从上面的测试结果分析,query虽然单独占用资源,但是时间很短,并且也是复用了连接池的资源,相当于把长事务分摊到短操作中。是否还有更优配置呢?
  4. 所以我们还需要做一组测试,把query放入事务中试试看。本次连接持有时间分布总样本中位数参考值是 1458262 ms。
  5. 最后,吞吐量有所提升,总体上这个优化方案是有效果的。

6.3、优化第二组测试

代码优化如下:

@Override
    public List<TestUser> optimizedGetAll2() {
        slowMethod(customProperties.getSlowMillis());
        TestUser user1 = getTestUser("王五", "jack");
        TestUser user2 = getTestUser("赵柳", "amy");

        return transactionTemplate.execute(new TransactionCallback<List<TestUser>>() {
            @Override
            public List<TestUser> doInTransaction(TransactionStatus status) {
                testUserDao.insert(user1);
                testUserDao.insert(user2);
                return testUserDao.queryByBlurry(user2);
            }
        });
    }

druid连接池主要结果分析:

指标


解释

事务时间分布

0,0,3778,222,0,0,0

事务运行时间分布,分布区间为[0-1 ms, 1-10 ms, 10-100 ms, 100-1 s, 1-10 s, 10-100 s, >100 s]

连接持有时间分布

0,0,2278,1611,111,0,0,0

连接持有时间分布,分布区间为[0-1 ms, 1-10 ms, 10-100 ms, 100ms-1s, 1-10 s, 10-100 s, 100-1000 s, >1000 s]

在JMeter中的吞吐量为:38.0/second

测试分析:

  1. 对比一二组,首先事务分布时间是改善的,但是并不明显;
  2. 本次连接持有时间分布总样本中位数参考值是 1474400 ms,对比一二组,第二组比第一组多耗费 16138 ms;
  3. 在该样本的情况下,第一组实际持有连接的时间更短,压力更为平均。
  4. 将不必要的query放入事务本身就是不推荐,本示例中query查询的数据量较小,如果数据量较大,从理论上分析,会明显影响事务的提交。
  5. 吞吐量基本无变化,这个是符合预期的。
  6. 所以这次优化,推荐使用第一组的方式。

7、总结

  • 在系统初次上线前,可以考虑编写测试用例用压测的方式拿到服务器的性能指标。
  • 在系统完成开发后,可以考虑对简单、中等、高复杂度的API分别进行压测摸清API的性能体现,以及对比服务器性能指标,有可能在上线前就能排查出问题。
  • 在系统上线后,如果遇到应用性能下降或并发问题,可以通过观察连接池和SQL分析定位大致的java代码块,解决问题最终还是需要针对性编写测试用例再次复盘测试。
  • 大部分情况下,系统缺省的参数都够你使用,任何一次参数优化调整都应该有理论支撑和实践证明,云调参张口就来谁都会。
  • 并发调优一定要抓住关键目标,找到核心资源,分析并发瓶颈链路。
  • 数据库连接池还有很多参数是可以帮助调优分析的,本文没有介绍,jmeter的压测的方式也是多种多样,应根据不同的场景调整。
  • 并发调优是一个复杂的过程,从应用所有的关联点都可能出现问题,本文只是从开发角度,针对请求长连接以及数据库长事务做了简单的分析和推测。