functools.wraps()作用

functools.wraps()函数可以将原函数对象的指定属性复制给包装函数对象,包含module,name,doc或者通过参数选择.常用于装饰器中.

装饰器作用过程

1.两层嵌套

示例:

def log(func):
def wrapper(*args, **kw):
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper
@log
def now():
print('2015-3-25')
>>> now()
call now():
2015-3-25

上例中,相关说明:

[email protected]()函数的定义处,相当于执行了语句:now = log(now).

由于log()是一个decorator,返回一个函数,所以,原来的now()函数仍然存在,只是现在同名的now变量指向了新的函数,于是调用now()将执行新函数,即在log()函数中返回的wrapper()函数。

wrapper()函数的参数定义是(*args, **kw),因此,wrapper()函数可以接受任意参数的调用。在wrapper()函数内,首先打印日志,再紧接着调用原始函数。

2.三层嵌套

如果decorator本身需要传入参数,那就需要编写一个返回decorator的高阶函数,写出来会更复杂。比如,要自定义log的文本:示例如下:

def log(text):
def decorator(func):
def wrapper(*args, **kw):
print('%s %s():' % (text, func.__name__))
return func(*args, **kw)
return wrapper
return decorator
@log('execute')
def now():
print('2015-3-25')

# 执行结果

>>> now()

execute now():

2015-3-25

和两层嵌套的decorator相比,3层嵌套的效果是这样的:

>>> now = log('execute')(now)

执行顺序如下:

首先执行log(‘execute’),返回的是decorator函数,再调用返回的函数,参数是now函数,返回值最终是wrapper函数。

问题

以上两种decorator的定义都没有问题,但还差最后一步。因为我们讲了函数也是对象,它有name等属性,但你去看经过decorator装饰之后的函数,它们的name已经从原来的’now’变成了’wrapper’:

>>> now.__name__
'wrapper'

原因

因为返回的那个wrapper()函数名字就是’wrapper’,所以,需要把原始函数的name等属性复制到wrapper()函数中,否则,有些依赖函数签名的代码执行就会出错。

解决方法

不需要编写wrapper.name = func.name这样的代码,Python内置的functools.wraps就是干这个事的,所以,一个完整的decorator的写法如下:

import functools
def log(func):
@functools.wraps(func)
def wrapper(*args, **kw):
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper

总结在面向对象(OOP)的设计模式中,decorator被称为装饰模式。OOP的装饰模式需要通过继承和组合来实现,而Python除了能支持OOP的decorator外,直接从语法层次支持decorator。Python的decorator可以用函数实现,也可以用类实现。

decorator可以增强函数的功能,定义起来虽然有点复杂,但使用起来非常灵活和方便。