chapter1

快速开始

import networkx as nx

from matplotlib import pyplot as plt

G = nx.Graph() # create a graph object

G.add_node('A') # 一次添加一个节点(这里使用字母作为节点的id)

G.add_nodes_from(['B','C']) # 添加多个节点

G.add_edge('A','B') # 一次添加一条边

G.add_edges_from([('B','C'),('A','C')]) # 一次添加多条

G.add_edges_from([('B', 'D'), ('C', 'E')])

plt.figure(figsize=(7.5,7.5)) # 7.5英寸*7.5英寸

nx.draw_networkx(G)

plt.show()

图像的全局配置

plt.rcParams.update({

'figure.figsize':(7.5,7.5)

})

chapter2

学习目标

Graph:了解无向网络的属性以及它们如何使用NetworkX Graph类表示。

Attributes:如何将数据与节点和边关联。

Edge Weight:了解如何量化连接强度并为边信息添加注释。

DiGraph:了解有向网络的属性以及如何使用NetworkX DiGraph类表示。

MultiGraph and MultiDiGraph:了解拥有并行边的网络。

Graph类——无向网络

import networkx as nx

from matplotlib import pyplot as plt

G = nx.karate_club_graph()

karate_pos = nx.spring_layout(G,k = 0.3) # 节点直接通过一条边连接,将会靠的更近

plt.figure()

nx.draw_networkx(G,karate_pos)

plt.show()

python networkx 中心性 python networkx教程_spring

Graph类提供了许多节点和边进行交互的方法:

获取节点和边的属性的迭代器

list(G.nodes) # [0,1,2...]

list(G.edges) # [(0,1),(0,2)...]

判断节点或边是否存在(根据id匹配)

hyh = 0

hyh in G # True

G.has_node(hyh) #True

member_id = 1

(hyh,member_id) in G.edges #True

G.has_edge(hyh,member_id) #True

获取节点的邻居,通常,通过一条边连接到某个特定节点的节点集称为该节点的邻居。

list(G.neighbors(hyh)) #[1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 17, 19, 21, 31]

为节点和边添加属性

有时候,网络节点和边缘被附加了额外的信息。在Graph类中,每个节点和边都可以有一组属性来存储这些附加信息。属性可以简单地作为存储与节点和边相关的信息的方便场所,也可以用于可视化和网络算法。

Graph类允许您向节点添加任意数量的属性。对于网络G,每个节点的属性都存储在G处的dict中。节点[v],其中v是节点的ID。

遍历节点,添加club属性

member_club = [

0, 0, 0, 0, 0, 0, 0, 0, 1, 1,

0, 0, 0, 0, 1, 1, 0, 0, 1, 0,

1, 0, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1]

for node_id in G.nodes:

G.nodes[node_id]["club"] = member_club[node_id]

G.add_node(11, club=0)

定制节点的颜色

node_color = [

'#1f78b4' if G.nodes[v]["club"] == 0

else '#33a02c' for v in G]

nx.draw_networkx(G, karate_pos, label=True, node_color=node_color)

python networkx 中心性 python networkx教程_spring_02

遍历边

# Iterate through all edges

for v, w in G.edges:

# Compare `club` property of edge endpoints

# Set edge `internal` property to True if they match

if G.nodes[v]["club"] == G.nodes[w]["club"]: # 两个节点直接存在联系

G.edges[v, w]["internal"] = True

else:

G.edges[v, w]["internal"] = False

internal = [e for e in G.edges if G.edges[e]["internal"]] # 存在联系的数组

external = [e for e in G.edges if not G.edges[e]["internal"]]

# Draw nodes and node labels 多个线样式,需要绘制多次

nx.draw_networkx_nodes(G, karate_pos, node_color=node_color)

nx.draw_networkx_labels(G, karate_pos)

# Draw internal edges as solid lines

nx.draw_networkx_edges(G, karate_pos, edgelist=internal)

# Draw external edges as dashed lines

nx.draw_networkx_edges(G, karate_pos, edgelist=external, style="dashed")# 虚线

python networkx 中心性 python networkx教程_python networkx 中心性_03

为边增加权重

定义计算边权重的函数

def tie_strength(G, v, w):

# Get neighbors of nodes v and w in G

v_neighbors = set(G.neighbors(v))

w_neighbors = set(G.neighbors(w))

# Return size of the set intersection

return 1 + len(v_neighbors & w_neighbors) # 交集大小

遍历每条边,计算权重

for v, w in G.edges:

G.edges[v, w]["weight"] = tie_strength(G, v, w)

# Store weights in a list

edge_weights = [G.edges[v, w]["weight"] for v, w in G.edges]

将边权值传递给spring_layout(),将强连接的节点推的更近。

# 将边权值传递给spring_layout(),将强连接节点推得更近

weighted_pos = nx.spring_layout(G, pos=karate_pos, k=0.3, weight="weight")

# Draw network with edge color determined by weight

nx.draw_networkx(

G, weighted_pos, width=8, node_color=node_color,

edge_color=edge_weights, edge_vmin=0, edge_vmax=6, edge_cmap=plt.cm.Blues)

# Draw solid/dashed lines on top of internal/external edges

nx.draw_networkx_edges(G, weighted_pos, edgelist=internal, edge_color="gray")

nx.draw_networkx_edges(G, weighted_pos, edgelist=external, edge_color="gray", style="dashed")

python networkx 中心性 python networkx教程_python networkx 中心性_04

有向图

这次从gxef中读取数据,类型是directed有向图,每条边都包含source和target。

<?xml version='1.0' encoding='utf-8'?>

NetworkX 2.2rc1.dev_20181126202121

26/11/2018

读取文件中的数据,画出图形。

G = nx.read_gexf("data/knecht2008/klas12b-net-1.gexf",node_type=int)

student_pos = nx.spring_layout(G, k=1.5)

nx.draw_networkx(G, student_pos, arrowsize=20)

python networkx 中心性 python networkx教程_python networkx教程_05

获取节点邻居,后继,前驱。

list(G.neighbors(20))

list(G.successors(20))

list(G.predecessors(20))

有向图转化为无向图

# Create undirected copies of G

G_either = G.to_undirected() # 默认情况下, 只要存在一个方向,就连接

G_both = G.to_undirected(reciprocal=True) # 两个方向都存在的时候,才会创建

# Set up a figure

plt.figure(figsize=(10,5))

# Draw G_either on left

plt.subplot(1, 2, 1)

nx.draw_networkx(G_either, student_pos)

# Draw G_both on right

plt.subplot(1, 2, 2)

nx.draw_networkx(G_both, student_pos)

python networkx 中心性 python networkx教程_有向图_06

并行边

例:A点到B点有许多条路

G = nx.MultiGraph()

G.add_edges_from([

("North Bank", "Kneiphof", {"bridge": "Krämerbrücke"}),

("North Bank", "Kneiphof", {"bridge": "Schmiedebrücke"}),

("North Bank", "Lomse", {"bridge": "Holzbrücke"}),

("Lomse", "Kneiphof", {"bridge": "Dombrücke"}),

("South Bank", "Kneiphof", {"bridge": "Grüne Brücke"}),

("South Bank", "Kneiphof", {"bridge": "Köttelbrücke"}),

("South Bank", "Lomse", {"bridge": "Hohe Brücke"})

])

list(G.edges)[0] # ('North Bank', 'Kneiphof', 0)

G.edges['North Bank', 'Kneiphof', 0] # {'bridge': 'Krämerbrücke'}