第三十二节:数码管中的倒计时程序。

开场白:
   上一节讲了一二级菜单的综合程序,这一节要教会大家三个知识点:
第一个:通过本程序,继续加深理解按键与数码管的关联方法。
第二个:复习一下我在第五节教给大家的时间校正法。
第三个:继续加深熟悉鸿哥首次提出的“一二级菜单显示理论”:凡是人机界面显示,不管是数码管还是液晶屏,都可以把显示的内容分成不同的窗口来显示,每个显示的窗口中又可以分成不同的局部显示。其中窗口就是一级菜单,用ucWd变量表示。局部就是二级菜单,用ucPart来表示。不同的窗口,会有不同的更新显示变量ucWdXUpdate来对应,表示整屏全部更新显示。不同的局部,也会有不同的更新显示变量ucWdXPartYUpdate来对应,表示局部更新显示。


具体内容,请看源代码讲解。

(1)硬件平台:基于朱兆祺51单片机学习板。启动和暂停键对应S1键,复位键对应S5键。

(2)实现功能:按下启动暂停按键时,倒计时开始工作,再按一次启动暂停按键时,则暂停倒计时。在任何时候,按下复位按键,倒计时将暂停工作,并且恢复倒计时当前默认值99。
     

(3)源代码讲解如下:

#include "REG52.H"




#define const_voice_short  40   //蜂鸣器短叫的持续时间
#define const_voice_long   200    //蜂鸣器长叫的持续时间


#define const_key_time1  20    //按键去抖动延时的时间
#define const_key_time2  20    //按键去抖动延时的时间




#define const_dpy_time_half  200  //数码管闪烁时间的半值
#define const_dpy_time_all   400  //数码管闪烁时间的全值 一定要比const_dpy_time_half 大


/* 注释一:
* 如何知道1秒钟需要多少个定时中断?
* 这个需要编写一段小程序测试,得到测试的结果后再按比例修正。
* 步骤:
* 第一步:在程序代码上先写入1秒钟大概需要200个定时中断。
* 第二步:把程序烧录进单片机后,上电开始测试,手上同步打开手机里的秒表。
*         如果单片机倒计时跑完了99秒,而手机上的秒表才走了45秒。
* 第三步:那么最终得出1秒钟需要的定时中断次数是:const_1s=(200*99)/45=440
*/




#define const_1s  440   //大概一秒钟所需要的定时中断次数


void initial_myself();    
void initial_peripheral();
void delay_short(unsigned int uiDelayShort); 
void delay_long(unsigned int uiDelaylong);


//驱动数码管的74HC595
void dig_hc595_drive(unsigned char ucDigStatusTemp16_09,unsigned char ucDigStatusTemp08_01);  
void display_drive(); //显示数码管字模的驱动函数
void display_service(); //显示的窗口菜单服务程序


//驱动LED的74HC595
void hc595_drive(unsigned char ucLedStatusTemp16_09,unsigned char ucLedStatusTemp08_01);


void T0_time();  //定时中断函数
void key_service(); //按键服务的应用程序
void key_scan();//按键扫描函数 放在定时中断里




sbit key_sr1=P0^0; //对应朱兆祺学习板的S1键
sbit key_sr2=P0^1; //对应朱兆祺学习板的S5键


sbit key_gnd_dr=P0^4; //模拟独立按键的地GND,因此必须一直输出低电平


sbit beep_dr=P2^7; //蜂鸣器的驱动IO口
sbit led_dr=P3^5;  //作为中途暂停指示灯 亮的时候表示中途暂停




sbit dig_hc595_sh_dr=P2^0;     //数码管的74HC595程序
sbit dig_hc595_st_dr=P2^1;  
sbit dig_hc595_ds_dr=P2^2;  


sbit hc595_sh_dr=P2^3;    //LED灯的74HC595程序
sbit hc595_st_dr=P2^4;  
sbit hc595_ds_dr=P2^5;  


unsigned char ucKeySec=0;   //被触发的按键编号


unsigned int  uiKeyTimeCnt1=0; //按键去抖动延时计数器
unsigned char ucKeyLock1=0; //按键触发后自锁的变量标志


unsigned int  uiKeyTimeCnt2=0; //按键去抖动延时计数器
unsigned char ucKeyLock2=0; //按键触发后自锁的变量标志




unsigned int  uiVoiceCnt=0;  //蜂鸣器鸣叫的持续时间计数器




unsigned char ucDigShow8;  //第8位数码管要显示的内容
unsigned char ucDigShow7;  //第7位数码管要显示的内容
unsigned char ucDigShow6;  //第6位数码管要显示的内容
unsigned char ucDigShow5;  //第5位数码管要显示的内容
unsigned char ucDigShow4;  //第4位数码管要显示的内容
unsigned char ucDigShow3;  //第3位数码管要显示的内容
unsigned char ucDigShow2;  //第2位数码管要显示的内容
unsigned char ucDigShow1;  //第1位数码管要显示的内容




unsigned char ucDigDot8;  //数码管8的小数点是否显示的标志
unsigned char ucDigDot7;  //数码管7的小数点是否显示的标志
unsigned char ucDigDot6;  //数码管6的小数点是否显示的标志
unsigned char ucDigDot5;  //数码管5的小数点是否显示的标志
unsigned char ucDigDot4;  //数码管4的小数点是否显示的标志
unsigned char ucDigDot3;  //数码管3的小数点是否显示的标志
unsigned char ucDigDot2;  //数码管2的小数点是否显示的标志
unsigned char ucDigDot1;  //数码管1的小数点是否显示的标志


unsigned char ucDigShowTemp=0; //临时中间变量
unsigned char ucDisplayDriveStep=1;  //动态扫描数码管的步骤变量


unsigned char ucWd=1;  //本程序的核心变量,窗口显示变量。类似于一级菜单的变量。代表显示不同的窗口。
unsigned char ucWd1Update=1; //窗口1更新显示标志




unsigned char ucCountDown=99;  //倒计时的当前值
unsigned char ucStartFlag=0;  //暂停与启动的标志位
unsigned int  uiTimeCnt=0;  //倒计时的时间计时器


unsigned char ucTemp1=0;  //中间过渡变量
unsigned char ucTemp2=0;  //中间过渡变量
unsigned char ucTemp3=0;  //中间过渡变量
unsigned char ucTemp4=0;  //中间过渡变量
unsigned char ucTemp5=0;  //中间过渡变量
unsigned char ucTemp6=0;  //中间过渡变量
unsigned char ucTemp7=0;  //中间过渡变量
unsigned char ucTemp8=0;  //中间过渡变量




//根据原理图得出的共阴数码管字模表
code unsigned char dig_table[]=
{
0x3f,  //0       序号0
0x06,  //1       序号1
0x5b,  //2       序号2
0x4f,  //3       序号3
0x66,  //4       序号4
0x6d,  //5       序号5
0x7d,  //6       序号6
0x07,  //7       序号7
0x7f,  //8       序号8
0x6f,  //9       序号9
0x00,  //无      序号10
0x40,  //-       序号11
0x73,  //P       序号12
};


void main() 
  {
   initial_myself();  
   delay_long(100);   
   initial_peripheral(); 
   while(1)  
   { 
       key_service(); //按键服务的应用程序
       display_service(); //显示的窗口菜单服务程序
   }


}




/* 注释二:
 *鸿哥首次提出的"一二级菜单显示理论":
 *凡是人机界面显示,不管是数码管还是液晶屏,都可以把显示的内容分成不同的窗口来显示,
 *每个显示的窗口中又可以分成不同的局部显示。其中窗口就是一级菜单,用ucWd变量表示。
 *局部就是二级菜单,用ucPart来表示。不同的窗口,会有不同的更新显示变量ucWdXUpdate来对应,
 *表示整屏全部更新显示。不同的局部,也会有不同的更新显示变量ucWdXPartYUpdate来对应,表示局部更新显示。
 */




void display_service() //显示的窗口菜单服务程序
{






  //由于本程序只有一个窗口,读者在做实际项目的时候,可以省略switch(ucWd)
   switch(ucWd)  //本程序的核心变量,窗口显示变量。类似于一级菜单的变量。代表显示不同的窗口。
   {
       case 1:   //显示窗口1的数据
            if(ucWd1Update==1)  //窗口1要全部更新显示
{
               ucWd1Update=0;  //及时清零标志,避免一直进来扫描


               ucTemp8=10;  //显示空
               ucTemp7=10;  //显示空
               ucTemp6=10;  //显示空
               ucTemp5=10;  //显示空
               ucTemp4=10;  //显示空
               ucTemp3=10;  //显示空


               ucTemp2=ucCountDown/10;  //倒计时的当前值
               ucTemp1=ucCountDown%10;




               ucDigShow8=ucTemp8;  
               ucDigShow7=ucTemp7;  
               ucDigShow6=ucTemp6;  
               ucDigShow5=ucTemp5; 
               ucDigShow4=ucTemp4;  
               ucDigShow3=ucTemp3; 




  if(ucCountDown<10)
  {
     ucDigShow2=10; 
  }
  else
  {
     ucDigShow2=ucTemp2; 
  }
  ucDigShow1=ucTemp1; 





            }
            break;
   
     }
   




}




void key_scan()//按键扫描函数 放在定时中断里
{  


  if(key_sr1==1)//IO是高电平,说明按键没有被按下,这时要及时清零一些标志位
  {
     ucKeyLock1=0; //按键自锁标志清零
     uiKeyTimeCnt1=0;//按键去抖动延时计数器清零,此行非常巧妙,是我实战中摸索出来的。      
  }
  else if(ucKeyLock1==0)//有按键按下,且是第一次被按下
  {
     uiKeyTimeCnt1++; //累加定时中断次数
     if(uiKeyTimeCnt1>const_key_time1)
     {
        uiKeyTimeCnt1=0; 
        ucKeyLock1=1;  //自锁按键置位,避免一直触发
        ucKeySec=1;    //触发1号键
     }
  }


  if(key_sr2==1)//IO是高电平,说明按键没有被按下,这时要及时清零一些标志位
  {
     ucKeyLock2=0; //按键自锁标志清零
     uiKeyTimeCnt2=0;//按键去抖动延时计数器清零,此行非常巧妙,是我实战中摸索出来的。      
  }
  else if(ucKeyLock2==0)//有按键按下,且是第一次被按下
  {
     uiKeyTimeCnt2++; //累加定时中断次数
     if(uiKeyTimeCnt2>const_key_time2)
     {
        uiKeyTimeCnt2=0; 
        ucKeyLock2=1;  //自锁按键置位,避免一直触发
        ucKeySec=2;    //触发2号键
     }
  }


}




void key_service() //按键服务的应用程序
{
  switch(ucKeySec) //按键服务状态切换
  {
    case 1:// 启动和暂停按键 对应朱兆祺学习板的S1键 



         //由于本程序只有一个窗口,读者在做实际项目的时候,可以省略switch(ucWd)
          switch(ucWd)  //在不同的窗口下,设置不同的参数
          {
              case 1:
                   if(ucStartFlag==0)  //如果原来处于暂停的状态,则启动
  {
                      ucStartFlag=1; //启动
  }
  else     //如果原来处于启动的状态,则暂停
  {
     ucStartFlag=0;  //暂停
  }
                   break;
           
          }     
          uiVoiceCnt=const_voice_short; //按键声音触发,滴一声就停。
          ucKeySec=0;  //响应按键服务处理程序后,按键编号清零,避免一致触发
          break;    
    
    case 2:// 复位按键 对应朱兆祺学习板的S5键 
 
         //由于本程序只有一个窗口,读者在做实际项目的时候,可以省略switch(ucWd)
          switch(ucWd)  //在不同的窗口下,设置不同的参数
          {
              case 1:
  ucStartFlag=0;  //暂停
                   ucCountDown=99;  //恢复倒计时的默认值99
                   uiTimeCnt=0;  //倒计时的时间计时器清零
  ucWd1Update=1; //窗口1更新显示标志  只要ucCountDown变化了,就要更新显示一次
                   break;
          
          }  
          uiVoiceCnt=const_voice_short; //按键声音触发,滴一声就停。
          ucKeySec=0;  //响应按键服务处理程序后,按键编号清零,避免一致触发
          break;  


  }                
}




void display_drive()  
{
   //以下程序,如果加一些数组和移位的元素,还可以压缩容量。但是鸿哥追求的不是容量,而是清晰的讲解思路
   switch(ucDisplayDriveStep)
   {
      case 1:  //显示第1位
           ucDigShowTemp=dig_table[ucDigShow1];
                   if(ucDigDot1==1)
                   {
                      ucDigShowTemp=ucDigShowTemp|0x80;  //显示小数点
                   }
           dig_hc595_drive(ucDigShowTemp,0xfe);
               break;
      case 2:  //显示第2位
           ucDigShowTemp=dig_table[ucDigShow2];
                   if(ucDigDot2==1)
                   {
                      ucDigShowTemp=ucDigShowTemp|0x80;  //显示小数点
                   }
           dig_hc595_drive(ucDigShowTemp,0xfd);
               break;
      case 3:  //显示第3位
           ucDigShowTemp=dig_table[ucDigShow3];
                   if(ucDigDot3==1)
                   {
                      ucDigShowTemp=ucDigShowTemp|0x80;  //显示小数点
                   }
           dig_hc595_drive(ucDigShowTemp,0xfb);
               break;
      case 4:  //显示第4位
           ucDigShowTemp=dig_table[ucDigShow4];
                   if(ucDigDot4==1)
                   {
                      ucDigShowTemp=ucDigShowTemp|0x80;  //显示小数点
                   }
           dig_hc595_drive(ucDigShowTemp,0xf7);
               break;
      case 5:  //显示第5位
           ucDigShowTemp=dig_table[ucDigShow5];
                   if(ucDigDot5==1)
                   {
                      ucDigShowTemp=ucDigShowTemp|0x80;  //显示小数点
                   }
           dig_hc595_drive(ucDigShowTemp,0xef);
               break;
      case 6:  //显示第6位
           ucDigShowTemp=dig_table[ucDigShow6];
                   if(ucDigDot6==1)
                   {
                      ucDigShowTemp=ucDigShowTemp|0x80;  //显示小数点
                   }
           dig_hc595_drive(ucDigShowTemp,0xdf);
               break;
      case 7:  //显示第7位
           ucDigShowTemp=dig_table[ucDigShow7];
                   if(ucDigDot7==1)
                   {
                      ucDigShowTemp=ucDigShowTemp|0x80;  //显示小数点
           }
           dig_hc595_drive(ucDigShowTemp,0xbf);
               break;
      case 8:  //显示第8位
           ucDigShowTemp=dig_table[ucDigShow8];
                   if(ucDigDot8==1)
                   {
                      ucDigShowTemp=ucDigShowTemp|0x80;  //显示小数点
                   }
           dig_hc595_drive(ucDigShowTemp,0x7f);
               break;
   }


   ucDisplayDriveStep++;
   if(ucDisplayDriveStep>8)  //扫描完8个数码管后,重新从第一个开始扫描
   {
     ucDisplayDriveStep=1;
   }






}




//数码管的74HC595驱动函数
void dig_hc595_drive(unsigned char ucDigStatusTemp16_09,unsigned char ucDigStatusTemp08_01)
{
   unsigned char i;
   unsigned char ucTempData;
   dig_hc595_sh_dr=0;
   dig_hc595_st_dr=0;


   ucTempData=ucDigStatusTemp16_09;  //先送高8位
   for(i=0;i<8;i++)
   { 
         if(ucTempData>=0x80)dig_hc595_ds_dr=1;
         else dig_hc595_ds_dr=0;


         dig_hc595_sh_dr=0;     //SH引脚的上升沿把数据送入寄存器
         delay_short(1); 
         dig_hc595_sh_dr=1;
         delay_short(1); 


         ucTempData=ucTempData<<1;
   }


   ucTempData=ucDigStatusTemp08_01;  //再先送低8位
   for(i=0;i<8;i++)
   { 
         if(ucTempData>=0x80)dig_hc595_ds_dr=1;
         else dig_hc595_ds_dr=0;


         dig_hc595_sh_dr=0;     //SH引脚的上升沿把数据送入寄存器
         delay_short(1); 
         dig_hc595_sh_dr=1;
         delay_short(1); 


         ucTempData=ucTempData<<1;
   }


   dig_hc595_st_dr=0;  //ST引脚把两个寄存器的数据更新输出到74HC595的输出引脚上并且锁存起来
   delay_short(1); 
   dig_hc595_st_dr=1;
   delay_short(1); 


   dig_hc595_sh_dr=0;    //拉低,抗干扰就增强
   dig_hc595_st_dr=0;
   dig_hc595_ds_dr=0;


}




//LED灯的74HC595驱动函数
void hc595_drive(unsigned char ucLedStatusTemp16_09,unsigned char ucLedStatusTemp08_01)
{
   unsigned char i;
   unsigned char ucTempData;
   hc595_sh_dr=0;
   hc595_st_dr=0;


   ucTempData=ucLedStatusTemp16_09;  //先送高8位
   for(i=0;i<8;i++)
   { 
         if(ucTempData>=0x80)hc595_ds_dr=1;
         else hc595_ds_dr=0;


         hc595_sh_dr=0;     //SH引脚的上升沿把数据送入寄存器
         delay_short(1); 
         hc595_sh_dr=1;
         delay_short(1); 


         ucTempData=ucTempData<<1;
   }


   ucTempData=ucLedStatusTemp08_01;  //再先送低8位
   for(i=0;i<8;i++)
   { 
         if(ucTempData>=0x80)hc595_ds_dr=1;
         else hc595_ds_dr=0;


         hc595_sh_dr=0;     //SH引脚的上升沿把数据送入寄存器
         delay_short(1); 
         hc595_sh_dr=1;
         delay_short(1); 


         ucTempData=ucTempData<<1;
   }


   hc595_st_dr=0;  //ST引脚把两个寄存器的数据更新输出到74HC595的输出引脚上并且锁存起来
   delay_short(1); 
   hc595_st_dr=1;
   delay_short(1); 


   hc595_sh_dr=0;    //拉低,抗干扰就增强
   hc595_st_dr=0;
   hc595_ds_dr=0;


}




void T0_time() interrupt 1
{
  TF0=0;  //清除中断标志
  TR0=0; //关中断


  key_scan(); //按键扫描函数




  if(ucStartFlag==1)  //启动倒计时的计时器
  {
     uiTimeCnt++;
     if(uiTimeCnt>=const_1s)    //1秒钟的时间到
     {
   if(ucCountDown!=0) //加这个判断,就是避免在0的情况下减1
   {
      ucCountDown--;  //倒计时当前显示值减1
   }


        if(ucCountDown==0)  //倒计时结束
   {
      ucStartFlag=0;  //暂停
           uiVoiceCnt=const_voice_long; //蜂鸣器触发提醒,滴一声就停。
   }


        ucWd1Update=1; //窗口1更新显示标志
        uiTimeCnt=0;   //计时器清零,准备从新开始计时
     }
  }






  if(uiVoiceCnt!=0)
  {
     uiVoiceCnt--; //每次进入定时中断都自减1,直到等于零为止。才停止鸣叫
     beep_dr=0;  //蜂鸣器是PNP三极管控制,低电平就开始鸣叫。
//     beep_dr=1;  //蜂鸣器是PNP三极管控制,低电平就开始鸣叫。
  }
  else
  {
     ; //此处多加一个空指令,想维持跟if括号语句的数量对称,都是两条指令。不加也可以。
     beep_dr=1;  //蜂鸣器是PNP三极管控制,高电平就停止鸣叫。
//     beep_dr=0;  //蜂鸣器是PNP三极管控制,高电平就停止鸣叫。
  }


  display_drive();  //数码管字模的驱动函数




  TH0=0xfe;   //重装初始值(65535-500)=65035=0xfe0b
  TL0=0x0b;
  TR0=1;  //开中断
}




void delay_short(unsigned int uiDelayShort) 
{
   unsigned int i;  
   for(i=0;i<uiDelayShort;i++)
   {
     ;   //一个分号相当于执行一条空语句
   }
}




void delay_long(unsigned int uiDelayLong)
{
   unsigned int i;
   unsigned int j;
   for(i=0;i<uiDelayLong;i++)
   {
      for(j=0;j<500;j++)  //内嵌循环的空指令数量
          {
             ; //一个分号相当于执行一条空语句
          }
   }
}




void initial_myself()  //第一区 初始化单片机
{


/* 注释三:
* 矩阵键盘也可以做独立按键,前提是把某一根公共输出线输出低电平,
* 模拟独立按键的触发地,本程序中,把key_gnd_dr输出低电平。
* 朱兆祺51学习板的S1就是本程序中用到的一个独立按键。
*/
  key_gnd_dr=0; //模拟独立按键的地GND,因此必须一直输出低电平


  led_dr=0;  //关闭独立LED灯
  beep_dr=1; //用PNP三极管控制蜂鸣器,输出高电平时不叫。


  hc595_drive(0x00,0x00);  //关闭所有经过另外两个74HC595驱动的LED灯


  TMOD=0x01;  //设置定时器0为工作方式1


  TH0=0xfe;   //重装初始值(65535-500)=65035=0xfe0b
  TL0=0x0b;


}


void initial_peripheral() //第二区 初始化外围
{




   ucDigDot8=0;   //小数点全部不显示
   ucDigDot7=0;  
   ucDigDot6=0; 
   ucDigDot5=0;  
   ucDigDot4=0; 
   ucDigDot3=0;  
   ucDigDot2=0;
   ucDigDot1=0; 


   EA=1;     //开总中断
   ET0=1;    //允许定时中断
   TR0=1;    //启动定时中断


}