0.环境准备
hadoop高可用搭建
参考:Hadoop搭建之高可用搭建
1.伪分布式
从微软镜像站下载
http://mirrors.hust.edu.cn/apache/
从清华镜像站下载
https://mirrors.tuna.tsinghua.edu.cn/apache/
#解压包到对应规划目录
tar -xvf spark-2.2.1-bin-hadoop2.7.tgz -C /opt/hadoop/apps
#创建软连接
ln -s spark-2.2.1-bin-hadoop2.7/ spark
(2)配置环境变量
vim ~/.bashrc
export SPARK_HOME=/opt/hadoop/apps/spark-2.2.1-bin-hadoop2.7/
export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin
source ~/.bashrc
(3)配置spark-site.xml
cp spark-env.sh.template spark-env.sh
vim spark-env.sh
export JAVA_HOME=/opt/hadoop/apps/jdk1.8.0_161
export HADOOP_HOME=/opt/hadoop/apps/hadoop-2.7.1/
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export SPARK_MASTER_IP=master
export SPARK_MASTER_PORT=7077
export SPARK_WORKER_MEMORY=1G
(4)启动及验证
a.启动
#在spark/sbin目录下执行
./start-all.sh
b.验证
Jps查看进程
[root@master sbin]# jps
5906 NameNode
6978 Worker
6281 DFSZKFailoverController
7050 Jps
6926 Master
6111 JournalNode
打开网页http://localhost:8080/查看
到spark的bin目录下./spark-shell命令查看
2.高可用安装
(1)配置spark-env.sh
export JAVA_HOME=/opt/hadoop/apps/jdk1.8.0_161
export HADOOP_HOME=/opt/hadoop/apps/hadoop-2.7.1/
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export SPARK_WORKER_MEMORY=500m
export SPARK_WORKER_CORES=1
export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER
-Dspark.deploy.zookeeper.url=slave1:2181,slave2:2181,slave3:2181
-Dspark.deploy.zookeeper.dir=/opt/hadoop/data/zookeeper/spark"
(2)配置slaves
vim slaves
master
slave1
slave2
slave3
(3)将文件分发给slave1,slave2,slave3
scp slaves slave1:/opt/hadoop/apps/spark-2.2.1-bin-hadoop2.7/conf
scp slaves slave2:/opt/hadoop/apps/spark-2.2.1-bin-hadoop2.7/conf
scp slaves slave3:/opt/hadoop/apps/spark-2.2.1-bin-hadoop2.7/conf
scp spark-env.sh slave1:/opt/hadoop/apps/spark-2.2.1-bin-hadoop2.7/conf
scp spark-env.sh slave2:/opt/hadoop/apps/spark-2.2.1-bin-hadoop2.7/conf
scp spark-env.sh slave3:/opt/hadoop/apps/spark-2.2.1-bin-hadoop2.7/conf
(4)配置环境变量
vim ~/.bashrc
export SPARK_HOME=/opt/hadoop/apps/spark-2.2.1-bin-hadoop2.7/
export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin
source ~/.bashrc
(5)启动及验证
#在spark/sbin目录下执行
./start-all.sh
#slave1,slave2,slave3的master没有启动,需要手动启动
./start-master.sh
如果将master节点关闭
3.基于standalone提交任务
(1)提交第一个任务
#计算圆周率
/opt/hadoop/apps/spark/bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://master:7077 \
--executor-memory 500m \
--total-executor-cores 1 \
/opt/hadoop/apps/spark/examples/jars/spark-examples_2.11-2.2.1.jar \
100
(2)启动spark-shell
#local模式启动
/opt/hadoop/apps/spark/bin/spark-shell
#集群模式启动
/opt/hadoop/apps/spark/bin/spark-shell \
--master spark://slave1:7077 \
--executor-memory 500m \
--total-executor-cores 1
#sc是SparkContext,spark是SparkSession
(3)运行wordcount程序
a.编写文件,并上传到hdfs
#1.创建文件夹
mkdir -p /opt/hadoop/data/spark/exercise
#2.编辑文件
vim word.txt
#文件内容如下
hello java
hello scala
hello python
hello spark
hello spark
hello hadoop
hello scala
hello spark
hello lilei
hello spark
hello hadoop
hello hadoop
hello java
#3.将文件上传至hdfs
hdfs dfs -mkdir -p /spark/input
b.spark-shell命令下执行程序
sc.textFile("/spark/input/word.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).saveAsTextFile("/spark/output")
4.基于yarn提交任务
(1)启动spark-shell
spark-shell --master yarn --deploy-mode client
报错:
[root@master sbin]# spark-shell --master yarn --deploy-mode client
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
21/02/04 12:24:53 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
21/02/04 12:25:07 WARN util.Utils: Service 'SparkUI' could not bind on port 4040. Attempting port 4041.
21/02/04 12:25:24 WARN yarn.Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
21/02/04 12:28:12 ERROR spark.SparkContext: Error initializing SparkContext.
org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:85)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:62)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:173)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:509)
at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2516)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:918)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:910)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:910)
at org.apache.spark.repl.Main$.createSparkSession(Main.scala:101)
at $line3.$read$$iw$$iw.<init>(<console>:15)
at $line3.$read$$iw.<init>(<console>:42)
at $line3.$read.<init>(<console>:44)
at $line3.$read$.<init>(<console>:48)
at $line3.$read$.<clinit>(<console>)
at $line3.$eval$.$print$lzycompute(<console>:7)
at $line3.$eval$.$print(<console>:6)
at $line3.$eval.$print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:786)
at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:1047)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:638)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:637)
at scala.reflect.internal.util.ScalaClassLoader$class.asContext(ScalaClassLoader.scala:31)
at scala.reflect.internal.util.AbstractFileClassLoader.asContext(AbstractFileClassLoader.scala:19)
at scala.tools.nsc.interpreter.IMain$WrappedRequest.loadAndRunReq(IMain.scala:637)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:569)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565)
at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:807)
at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:681)
at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:395)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply$mcV$sp(SparkILoop.scala:38)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:37)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:37)
at scala.tools.nsc.interpreter.IMain.beQuietDuring(IMain.scala:214)
at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:37)
at org.apache.spark.repl.SparkILoop.loadFiles(SparkILoop.scala:98)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply$mcZ$sp(ILoop.scala:920)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
at scala.reflect.internal.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:97)
at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:909)
at org.apache.spark.repl.Main$.doMain(Main.scala:74)
at org.apache.spark.repl.Main$.main(Main.scala:54)
at org.apache.spark.repl.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:775)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:119)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
21/02/04 12:28:12 WARN cluster.YarnSchedulerBackend$YarnSchedulerEndpoint: Attempted to request executors before the AM has registered!
21/02/04 12:28:13 WARN metrics.MetricsSystem: Stopping a MetricsSystem that is not running
org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:85)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:62)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:173)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:509)
at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2516)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:918)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:910)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:910)
at org.apache.spark.repl.Main$.createSparkSession(Main.scala:101)
... 47 elided
<console>:14: error: not found: value spark
import spark.implicits._
^
<console>:14: error: not found: value spark
import spark.sql
^
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 2.2.1
/_/
Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_161)
Type in expressions to have them evaluated.
Type :help for more information.
scala>
View Code
#停止yarn集群,修改yarn-site.xml,然后启动yarn集群
<!-- spark 部署到 yarn 上需要这两个配置 -->
<!-- 是否启动一个线程检查每个任务正在使用的物理内存,如果超出分配值,则直接杀掉该任务,默认为 true -->
<property>
<name>yarn.nodemanager.pmem-check-enabled</name>
<value>false</value>
</property>
<!-- 是否启动一个线程检查每个任务正在试用的虚拟内存,如果超出分配值,则直接杀掉该任务,默认为 true -->
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
<!-- spark 部署到 yarn 上需要这两个配置 -->
#结果
spark-shell --master yarn --deploy-mode client
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
21/02/04 14:23:06 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
21/02/04 14:23:19 WARN yarn.Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
Spark context Web UI available at http://192.168.56.200:4040
Spark context available as 'sc' (master = yarn, app id = application_1612418410824_0001).
Spark session available as 'spark'.
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 2.2.1
/_/
Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_161)
Type in expressions to have them evaluated.
Type :help for more information.
(2)spark-shell下运行程序
scala> val array = Array(1,2,3,4)
array: Array[Int] = Array(1, 2, 3, 4)
scala> val rdd = sc.makeRDD(array)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at makeRDD at <console>:26
scala> rdd.count
res1: Long = 4
(3)运行自带计算圆周率程序
/opt/hadoop/apps/spark/bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--executor-memory 500m \
--total-executor-cores 1 \
/opt/hadoop/apps/spark/examples/jars/spark-examples_2.11-2.2.1.jar \
100
爱人不亲,反其仁;治人不治,反其智;礼人不答,反其敬;行有不得,反求诸己