文章目录
- 前言
- 一、卷积
- 1. 一维卷积
- 2. 二维卷积
- 二、特征图的尺寸计算
前言
因为研究生方向是图像处理,所以开一个专题来记录自己的学习过程。小白刚接触,有错勿喷,欢迎讨论
一、卷积
滤波,通过滤波,能够得到感兴趣的信息,下面通过一些例子就能够看出来
1. 一维卷积
《信号与系统》里面就讲了一维的卷积,计算公式为:
可以看到,两个(一维)信号的卷积,就是一个信号h(t)翻转后,从左到右滑动,与信号f(t)重叠区域的面积,如下图:
2. 二维卷积
一维卷积不容易看出卷积的实质——“滤波”,但是二维卷积就可以有很好的看出来,如下图:
卷积核大小为3x3,在图像上滑动(相关和卷积类似,但是有很小的区别,将卷积核上下左右翻转,再沿着滑动方向做相关操作,得到的结果和直接做相关操作的结果一样),选择特定的卷积核,就可以提取一定的特征,比如下图中的锐化滤波卷积核:
就能够突出图像的细节部分,计算公式为:中间像素值 x 9 - 周围的8个像素差值之和,也就是说差别越大、滤波后细节更突出
二、特征图的尺寸计算
特征图,从二维卷积的示意图可以看出,卷积会改变图像的尺寸,以下图为例,卷积核尺寸为3x3,图像大小(空白方格)为7x7,卷积核移动的步长s = 2, 填充部分p = 1,卷积核的中心对齐最左上角的像素,开始滑动,横向滑动能够得到4个“像素”,纵向滑动能够得到4个“像素”,于是特征图尺寸为4x4
计算公式便为(公式中括号的意思为向下取整):
将图中的数据代入公式,也是这个结果。如果碰到图像长宽不一样的情况,分别计算两个方向的尺寸就好