卷积神经网络的图怎么画 卷积神经网络视频教程_卷积神经网络的图怎么画

卷积神经网络工作原理直观的解释?

其实道理很简单,因为卷积运算,从频域角度看,是频谱相乘所以图像跟卷积核做卷积时,两者频谱不重叠的部分相乘,自然是0,那图像这部分频率的信息就被卷积核过滤了。

而图像,本质上就是二维离散的信号,像素点值的大小代表该位置的振幅,所以图像包含了一系列频率的特征。比如图像边缘部分,像素值差别大,属于高频信号,背景部分,像素值差别小,是低频信号。

所以如果卷积核具有『高通』性质,就能起到提取图像边缘的作用,低通则有模糊的效果。所以,卷积神经网络的牛逼之处在于通过卷积层的不同卷积核,提取图像不同频段的特征;以及通过池化层,提取不同粒度的特征。


卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习(deeplearning)的代表算法之一。

卷积神经网络具有表征学习(representationlearning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariantclassification),因此也被称为“平移不变人工神经网络。

卷积神经网络每层提取的特征是什么样的

卷积神经网络是一个多层的神经网络,每层由多个二维平面组成,而每个平面由多个独立神经元组成。

图:卷积神经网络的概念示范:输入图像通过和三个可训练的滤波器和可加偏置进行卷积,滤波过程如图一,卷积后在C1层产生三个特征映射图,然后特征映射图中每组的四个像素再进行求和,加权值,加偏置,通过一个Sigmoid函数得到三个S2层的特征映射图。

这些映射图再进过滤波得到C3层。这个层级结构再和S2一样产生S4。最终,这些像素值被光栅化,并连接成一个向量输入到传统的神经网络,得到输出。

一般地,C层为特征提取层,每个神经元的输入与前一层的局部感受野相连,并提取该局部的特征,一旦该局部特征被提取后,它与其他特征间的位置关系也随之确定下来;S层是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射为一个平面,平面上所有神经元的权值相等。

特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性。此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数,降低了网络参数选择的复杂度。

卷积神经网络中的每一个特征提取层(C-层)都紧跟着一个用来求局部平均与二次提取的计算层(S-层),这种特有的两次特征提取结构使网络在识别时对输入样本有较高的畸变容忍能力。

什么是卷积神经网络?为什么它们很重要

卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。

[1]  它包括卷积层(alternatingconvolutionallayer)和池层(poolinglayer)。卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。

20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(ConvolutionalNeuralNetworks-简称CNN)。

现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。

K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。随后,更多的科研工作者对该网络进行了改进。

其中,具有代表性的研究成果是Alexander和Taylor提出的“改进认知机”,该方法综合了各种改进方法的优点并避免了耗时的误差反向传播。

怎样通俗易懂地解释卷积?

对卷积的意义的理解:从“积”的过程可以看到,我们得到的叠加值,是个全局的概念。

以信号分析为例,卷积的结果是不仅跟当前时刻输入信号的响应值有关,也跟过去所有时刻输入信号的响应都有关系,考虑了对过去的所有输入的效果的累积。

在图像处理的中,卷积处理的结果,其实就是把每个像素周边的,甚至是整个图像的像素都考虑进来,对当前像素进行某种加权处理。

所以说,“积”是全局概念,或者说是一种“混合”,把两个函数在时间或者空间上进行混合。那为什么要进行“卷”?直接相乘不好吗?

我的理解,进行“卷”(翻转)的目的其实是施加一种约束,它指定了在“积”的时候以什么为参照。

在信号分析的场景,它指定了在哪个特定时间点的前后进行“积”,在空间分析的场景,它指定了在哪个位置的周边进行累积处理。例1:信号分析如下图所示,输入信号是f(t),是随时间变化的。

系统响应函数是g(t),图中的响应函数是随时间指数下降的,它的物理意义是说:如果在t=0的时刻有一个输入,那么随着时间的流逝,这个输入将不断衰减。

换言之,到了t=T时刻,原来在t=0时刻的输入f(0)的值将衰减为f(0)g(T)。

卷积神经网络cnn究竟是怎样一步一步工作的

用一个卷积核滑动图片来提取某种特征(比如某个方向的边),然后激活函数用ReLU来压制梯度弥散。

对得到的结果用另一个卷积核继续提取+reLU,然后池化(保留区域最大或者用区域平均来替换整个局部区域的值,保证平移不变性和一定程度上对过拟合的压制)之后“深度”的话,就会需要对池化后的结果继续用不同的卷积核进行“卷积+relu”再池化的工作。

最后得到的实质是一个图片的深度特征,然后实际分类需要另外加一层,一般是softmax。

(也就是说如果对一个现成的已经训练完毕的卷积神经网络模型,只保留除了最后一层之外的部分,然后输入训练图片,把网络的输出重新送入一个多类的SVM再训练,最后也能得到差不多的结果,取决于svm的参数。)

卷积神经网络主要做什么用的?

卷积网络的特点主要是卷积核参数共享,池化操作。

参数共享的话的话是因为像图片等结构化的数据在不同的区域可能会存在相同的特征,那么就可以把卷积核作为detector,每一层detect不同的特征,但是同层的核是在图片的不同地方找相同的特征。

然后把底层的特征组合传给后层,再在后层对特征整合(一般深度网络是说不清楚后面的网络层得到了什么特征的)。而池化主要是因为在某些任务中降采样并不会影响结果。

所以可以大大减少参数量,另外,池化后在之前同样大小的区域就可以包含更多的信息了。综上,所有有这种特征的数据都可以用卷积网络来处理。

有卷积做视频的,有卷积做文本处理的(当然这两者由于是序列信号,天然更适合用lstm处理)另外,卷积网络只是个工具,看你怎么使用它,有必要的话你可以随意组合池化和卷积的顺序,可以改变网络结构来达到自己所需目的的,不必太被既定框架束缚。