先补上中间一课:pdb: 

import pdb

pdb.set_trace()

命令:

l -- list

n -- next

p data -- print var

c -- continue

s -- step in

q -- quit

 

还有一种更好的方式, 叫ipdb. 用法和PDB很相似. 不过返回的输出是彩色的.

  • ENTER (重复上次命令)
  • c (继续)
  • l (查找当前位于哪里)
  • s (进入子程序,如果当前有一个函数调用,那么 s 会进入被调用的函数体)
  • n(ext) 让程序运行下一行,如果当前语句有一个函数调用,用 n 是不会进入被调用的函数体中的
  • r (运行直到子程序结束)
  • !<python 命令>
  • h (帮助)
  • a(rgs) 打印当前函数的参数
  • j(ump) 让程序跳转到指定的行数
  • l(ist) 可以列出当前将要运行的代码块
  • p(rint) 最有用的命令之一,打印某个变量
  • q(uit) 退出调试
  • r(eturn) 继续执行,直到函数体返回

 

PaddlePaddle基础命令

import paddle.fluid as fluid

# 定义两个张量
x1 = fluid.layers.fill_constant(shape=[2, 2], value=1, dtype='int64')
x2 = fluid.layers.fill_constant(shape=[2, 2], value=1, dtype='int64')

# 将两个张量求和
y1 = fluid.layers.sum(x=[x1, x2])

# 创建一个使用CPU的解释器
place = fluid.CPUPlace()
exe = fluid.executor.Executor(place)
# 进行参数初始化
exe.run(fluid.default_startup_program())

# 进行运算,并把y的结果输出
result = exe.run(program=fluid.default_main_program(),
                 fetch_list=[y1])
print(result)
import paddle.fluid as fluid
import numpy as np

# 定义两个张量
a = fluid.layers.create_tensor(dtype='int64', name='a')
b = fluid.layers.create_tensor(dtype='int64', name='b')

# 将两个张量求和
y = fluid.layers.sum(x=[a, b])

# 创建一个使用CPU的解释器
place = fluid.CPUPlace()
exe = fluid.executor.Executor(place)
# 进行参数初始化
exe.run(fluid.default_startup_program())

# 定义两个要计算的变量
a1 = np.array([3, 2]).astype('int64')
b1 = np.array([1, 1]).astype('int64')

# 进行运算,并把y的结果输出
out_a, out_b, result = exe.run(program=fluid.default_main_program(),
                               feed={'a': a1, 'b': b1},
                               fetch_list=[a, b, y])
print(out_a, " + ", out_b," = ", result)
import paddle.fluid as fluid
import paddle
import numpy as np

# 定义一个简单的线性网络
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
hidden = fluid.layers.fc(input=x, size=100, act='relu')
net = fluid.layers.fc(input=hidden, size=1, act=None)

# 定义损失函数
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=net, label=y)
avg_cost = fluid.layers.mean(cost)

# 复制一个主程序,方便之后使用
test_program = fluid.default_main_program().clone(for_test=True)

# 定义优化方法
optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.01)
opts = optimizer.minimize(avg_cost)

# 创建一个使用CPU的解释器
place = fluid.CPUPlace()
exe = fluid.Executor(place)
# 进行参数初始化
exe.run(fluid.default_startup_program())

# 定义训练和测试数据
x_data = np.array([[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 
                   [2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 
                   [3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 
                   [4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 
                   [5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]).astype('float32')
y_data = np.array([[3.0], [5.0], [7.0], [9.0], [11.0]]).astype('float32')
test_data = np.array([[6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]).astype('float32')

# 开始训练100个pass
for pass_id in range(10):
    train_cost = exe.run(program=fluid.default_main_program(),
                         feed={'x': x_data, 'y': y_data},
                         fetch_list=[avg_cost])
    print("Pass:%d, Cost:%0.5f" % (pass_id, train_cost[0]))

# 开始预测
result = exe.run(program=test_program,
                 feed={'x': test_data, 'y': np.array([[0.0]]).astype('float32')},
                 fetch_list=[net])
print("当x为6.0时,y为:%0.5f" % result[0][0][0])
# 导入基本的库
import paddle.fluid as fluid
import paddle
import numpy as np
import os

BUF_SIZE=500
BATCH_SIZE=20

#用于训练的数据提供器,每次从缓存中随机读取批次大小的数据
train_reader = paddle.batch(
    paddle.reader.shuffle(paddle.dataset.uci_housing.train(), 
                          buf_size=BUF_SIZE),                    
    batch_size=BATCH_SIZE)   
#用于测试的数据提供器,每次从缓存中随机读取批次大小的数据
test_reader = paddle.batch(
    paddle.reader.shuffle(paddle.dataset.uci_housing.test(),
                          buf_size=BUF_SIZE),
    batch_size=BATCH_SIZE)  

#用于打印,查看uci_housing数据
train_data=paddle.dataset.uci_housing.train();
sampledata=next(train_data())
print(sampledata)

#定义张量变量x,表示13维的特征值
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
#定义张量y,表示目标值
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
#定义一个简单的线性网络,连接输入和输出的全连接层
#input:输入tensor;
#size:该层输出单元的数目
#act:激活函数
y_predict=fluid.layers.fc(input=x,size=1,act=None)

cost = fluid.layers.square_error_cost(input=y_predict, label=y) #求一个batch的损失值
avg_cost = fluid.layers.mean(cost)                              #对损失值求平均值


optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.001)
opts = optimizer.minimize(avg_cost)
test_program = fluid.default_main_program().clone(for_test=True)

use_cuda = False                         #use_cuda为False,表示运算场所为CPU;use_cuda为True,表示运算场所为GPU           
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)              #创建一个Executor实例exe
exe.run(fluid.default_startup_program()) #Executor的run()方法执行startup_program(),进行参数初始化

# 定义输入数据维度
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])#feed_list:向模型输入的变量表或变量表名

iter=0;
iters=[]
train_costs=[]

def draw_train_process(iters,train_costs):
    title="training cost"
    plt.title(title, fontsize=24)
    plt.xlabel("iter", fontsize=14)
    plt.ylabel("cost", fontsize=14)
    plt.plot(iters, train_costs,color='red',label='training cost') 
    plt.grid()
    plt.show()


EPOCH_NUM=50
model_save_dir = "/home/aistudio/work/fit_a_line.inference.model"

for pass_id in range(EPOCH_NUM):                                  #训练EPOCH_NUM轮
    # 开始训练并输出最后一个batch的损失值
    train_cost = 0
    for batch_id, data in enumerate(train_reader()):              #遍历train_reader迭代器
        train_cost = exe.run(program=fluid.default_main_program(),#运行主程序
                             feed=feeder.feed(data),              #喂入一个batch的训练数据,根据feed_list和data提供的信息,将输入数据转成一种特殊的数据结构
                             fetch_list=[avg_cost])    
        if batch_id % 40 == 0:
            print("Pass:%d, Cost:%0.5f" % (pass_id, train_cost[0][0]))    #打印最后一个batch的损失值
        iter=iter+BATCH_SIZE
        iters.append(iter)
        train_costs.append(train_cost[0][0])
       
   
    # 开始测试并输出最后一个batch的损失值
    test_cost = 0
    for batch_id, data in enumerate(test_reader()):               #遍历test_reader迭代器
        test_cost= exe.run(program=test_program, #运行测试cheng
                            feed=feeder.feed(data),               #喂入一个batch的测试数据
                            fetch_list=[avg_cost])                #fetch均方误差
    print('Test:%d, Cost:%0.5f' % (pass_id, test_cost[0][0]))     #打印最后一个batch的损失值
    
    #保存模型
    # 如果保存路径不存在就创建
if not os.path.exists(model_save_dir):
    os.makedirs(model_save_dir)
print ('save models to %s' % (model_save_dir))
#保存训练参数到指定路径中,构建一个专门用预测的program
fluid.io.save_inference_model(model_save_dir,   #保存推理model的路径
                                  ['x'],            #推理(inference)需要 feed 的数据
                                  [y_predict],      #保存推理(inference)结果的 Variables
                                  exe)              #exe 保存 inference model
draw_train_process(iters,train_costs)





infer_exe = fluid.Executor(place)    #创建推测用的executor
inference_scope = fluid.core.Scope() #Scope指定作用域

infer_results=[]
groud_truths=[]

#绘制真实值和预测值对比图
def draw_infer_result(groud_truths,infer_results):
    title='Boston'
    plt.title(title, fontsize=24)
    x = np.arange(1,20) 
    y = x
    plt.plot(x, y)
    plt.xlabel('ground truth', fontsize=14)
    plt.ylabel('infer result', fontsize=14)
    plt.scatter(groud_truths, infer_results,color='green',label='training cost') 
    plt.grid()
    plt.show()



with fluid.scope_guard(inference_scope):#修改全局/默认作用域(scope), 运行时中的所有变量都将分配给新的scope。
    #从指定目录中加载 推理model(inference model)
    [inference_program,                             #推理的program
     feed_target_names,                             #需要在推理program中提供数据的变量名称
     fetch_targets] = fluid.io.load_inference_model(#fetch_targets: 推断结果
                                    model_save_dir, #model_save_dir:模型训练路径 
                                    infer_exe)      #infer_exe: 预测用executor
    #获取预测数据
    infer_reader = paddle.batch(paddle.dataset.uci_housing.test(),  #获取uci_housing的测试数据
                          batch_size=200)                           #从测试数据中读取一个大小为200的batch数据
    #从test_reader中分割x
    test_data = next(infer_reader())
    test_x = np.array([data[0] for data in test_data]).astype("float32")
    test_y= np.array([data[1] for data in test_data]).astype("float32")
    results = infer_exe.run(inference_program,                              #预测模型
                            feed={feed_target_names[0]: np.array(test_x)},  #喂入要预测的x值
                            fetch_list=fetch_targets)                       #得到推测结果 
                            
    print("infer results: (House Price)")
    for idx, val in enumerate(results[0]):
        print("%d: %.2f" % (idx, val))
        infer_results.append(val)
    print("ground truth:")
    for idx, val in enumerate(test_y):
        print("%d: %.2f" % (idx, val))
        groud_truths.append(val)
    draw_infer_result(groud_truths,infer_results)