文章目录

  • 网络协议深入了解
  • 一、练习wireshark抓取网络数据包
  • 二、数据发送抓包
  • C编程完成modbus协议,从云端服务器读取温湿度数据
  • 一、c语言完成modbus协议从云端服务器读取信息
  • 二、运行结果
  • 用stm32最小核心板+AHT20模块,完成一个 modbus接口的温湿度Slave设备,能够让上位机PC通过modbus协议获取温湿度。主程序采用多任务框架,比如RT-thread Nano。
  • 一、STM32移植RT_THread
  • 二、Keil代码编写


网络协议深入了解

一、练习wireshark抓取网络数据包

1.测试聊天功能

java modbustcp协议传输汉字_网络


测试成功

2.使用wireshark抓取网络数据

java modbustcp协议传输汉字_服务器_02


通过Wireshark抓包,可以验证该程序运行时通过UDP协议进行发送,并发送到广播地址255.255.255.255,保证同房间处于任意端口号的可以接受到信息,端口号则是5000+房间号。

二、数据发送抓包

1.抓取西文字符

以我发送的259429为例

java modbustcp协议传输汉字_#include_03


java modbustcp协议传输汉字_网络_04


根据抓包可知:该端口号是5001,房间号是1234发送的数据是259429转化了Ascll码,可以在传输数据中显示并查询到;在下面那一栏我们可以很明显打看到一个数字对应一个字节,并且可以直接看到抓包数据

2.抓取汉字字符

虚拟机发送的是真理

java modbustcp协议传输汉字_服务器_05


java modbustcp协议传输汉字_#include_06


Port显示同西文字符相同,处于1234聊天室因此port为6234,在发送阶段略有不同 真理为2汉字,占8字节,一个汉字为4字节,在此阶段,中文字符被隐藏,不能正常显示使用字符转换工具 16进制->utf-8查看汉字字符集

java modbustcp协议传输汉字_网络_07


3.抓取混合字符

java modbustcp协议传输汉字_服务器_08


java modbustcp协议传输汉字_High_09


其余信息不变,数据部分西文字符可直接观察,中文需要编译转换

java modbustcp协议传输汉字_High_10


UDP协议是一种无连接的协议,并不需要在两台计算机之间建立固定连接,近程即时通讯,脱离了远程的服务器,避免了和远程服务器连接时造成网络浪费,也避免了服务器忙或服务器无法连接的状况。

C编程完成modbus协议,从云端服务器读取温湿度数据

一、c语言完成modbus协议从云端服务器读取信息

1.TCP方式请求数据

新建一个tcp客户端项目

java modbustcp协议传输汉字_High_11

更改代码

#include <stdio.h>
#include <string.h>
#include <stdbool.h>
#include <winsock2.h>  
#include <math.h>
#include "stdint.h"
#define length_8 8    //定义一个宏,为传入8位16进制数的个数
#define PORT 8002
#define SERVER_IP "123.56.90.74"
#define BUFFER_SIZE 4196

const char* kExitFlag = "exit";


/* 返回ch字符在sign数组中的序号 */
int getIndexOfSigns(char ch)
{
	if(ch >= '0' && ch <= '9')
	{
		return ch - '0';
	}
	if(ch >= 'A' && ch <='F') 
	{
		return ch - 'A' + 10;
	}
	if(ch >= 'a' && ch <= 'f')
	{
		return ch - 'a' + 10;
	}
	return -1;
}
/* 十六进制数转换为十进制数 */
int hexToDec(char *source)
{
	int sum = 0;
	int t = 1;
	int i, len=4;
	char low,high;
	for(int i=0,j=7;i<4;i++){
		//TODO
		high = (source[i] & 0xf0)>>4;
		low = source[i] & 0x0f;
		sum += high*pow(16,j--)+low*pow(16,j--); 
	}
	return sum;
}



const unsigned char *fromhex(const char *str)
{
	static unsigned char buf[512];
	size_t len = strlen(str) / 2;
	if (len > 512) len = 512;
	for (size_t i = 0; i < len; i++) {
		unsigned char c = 0;
		if (str[i * 2] >= '0' && str[i*2] <= '9') 
			c += (str[i * 2] - '0') << 4;
		if ((str[i * 2] & ~0x20) >= 'A' && (str[i*2] & ~0x20) <= 'F') 
			c += (10 + (str[i * 2] & ~0x20) - 'A') << 4;
		if (str[i * 2 + 1] >= '0' && str[i * 2 + 1] <= '9') 
			c += (str[i * 2 + 1] - '0');
		if ((str[i * 2 + 1] & ~0x20) >= 'A' && (str[i * 2 + 1] & ~0x20) <= 'F')
			c += (10 + (str[i * 2 + 1] & ~0x20) - 'A');
		buf[i] = c;
	}
	return buf;
}

uint16_t CRC_16(uint8_t *temp)
{
	uint8_t i,j;
	uint16_t CRC_1 = 0xFFFF;          //声明CRC寄存区,也就是步骤1
	for(i = 0;i < 6;i++)       //这里的for循环说的是步骤6中的重复步骤 2 到步骤 5
	{
		CRC_1 ^= temp[i]; //这里就是步骤2,进行异或运算
		for(j = 0;j < 8;j++)         //用来将异或后的低八位全部移出的for循环
		{
			if(CRC_1 & 0x01)         //判断低八位的最后一位是否为1,为1时执行下列语句,也就是步骤3说的移位判断与步骤5说的右移8次
			{
				/*一定要先移位,再异或*/
				CRC_1 >>=1;          //移位后再异或,就是步骤4
				CRC_1 ^= 0xA001;     //0xA001为0x8005的逆序
			}
			else                    //若不为1,则直接移位。
			{
				CRC_1 >>=1;
			}
		}
	}
	
	//	CRC_1 = (((CRC_1 & 0xFF)<<8) + (CRC_1>>8));
	//	printf("%04x\r\n",CRC_1);     //用于打印检测CRC校验码
	return(CRC_1);
}

int main() {
	// 初始化socket dll。
	WORD winsock_version = MAKEWORD(2,2);
	WSADATA wsa_data;
	if (WSAStartup(winsock_version, &wsa_data) != 0) {
		printf("Failed to init socket!\n");
		return 1;
	}
	
	SOCKET client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
	if (client_socket == INVALID_SOCKET) {
		printf("Failed to create server socket!\n");
		return 2;
	}
	
	struct sockaddr_in server_addr;
	server_addr.sin_family = AF_INET;
	server_addr.sin_port = htons(PORT);
	server_addr.sin_addr.S_un.S_addr = inet_addr(SERVER_IP);
	if (connect(client_socket, (LPSOCKADDR)&server_addr, sizeof(server_addr)) == SOCKET_ERROR) {
		printf("Failed to connect server: %ld !\n", GetLastError());
		return 3;
	}
	
	char recv_data[BUFFER_SIZE+1];
	while (true) {
		uint8_t data[length_8];
		printf("具体指令给格式为0+传感器编号(1,2,3,4,5)0300010002");
		printf("请输入采集传感器的指令):\r\n");
		scanf("%s",data);
		uint16_t crc;
		unsigned char * cmd;
		char crc1[8];
		cmd = fromhex(data);
		crc = CRC_16(cmd);
		uint8_t a = 0xFF;
		for(int i=0;i<6;i++){
			//TODO
			crc1[i] = cmd[i];
		}
		crc1[6] = a & crc;
		crc1[7] = (crc >> 8) & a;
		
		if (send(client_socket, crc1, 8, 0) < 0) {
			printf("Failed to send data!\n");
			break;
		}
		
		int ret = recv(client_socket, recv_data, BUFFER_SIZE, 0);
		if (ret < 0) {
			printf("Failed to receive data!\n");
			break;
		}
		recv_data[ret]=0; // correctly ends received string
		char yb[4],wd[4];
		for(int i=0;i<4;i++){
			//TODO
			yb[i] = recv_data[4+i];
			wd[i] = recv_data[8+i];
			
		}
		float mic = hexToDec(yb)/100.0;
		float strain_temp = hexToDec(wd)/100.0;
		printf("应变:%f\r\n",mic);
		printf("温度:%f\r\n",strain_temp);
		
		
		//		printf("Receive data from server: \"%x\"\n",recv_data);
		if (strcmp(data,kExitFlag)==0) {
			printf("Exit!\n");
			break;
		}
	}
	
	closesocket(client_socket);
	WSACleanup();
	
	return 0;
}

java modbustcp协议传输汉字_High_12


其中服务器的地址为123.56.90.74

java modbustcp协议传输汉字_网络_13


java modbustcp协议传输汉字_服务器_14

二、运行结果

java modbustcp协议传输汉字_服务器_15

用stm32最小核心板+AHT20模块,完成一个 modbus接口的温湿度Slave设备,能够让上位机PC通过modbus协议获取温湿度。主程序采用多任务框架,比如RT-thread Nano。

一、STM32移植RT_THread

1.CubeMX安装Nano pack

先获取软件包地址:https://www.rt-thread.org/download/cube/RealThread.RT-Thread.pdsc

打开 CubeMX,从菜单栏 help 进入 Manage embedded software packages 界面,点击 From Url 按钮,进入 User Defined Packs Manager 界面,其次点击 new,填入上述网址,然后点击 check

java modbustcp协议传输汉字_网络_16


2.keil MDK安装RT_THread

java modbustcp协议传输汉字_#include_17


CubeMX新建文件

选择 Nano 组件

(1)点击 Softwares Packages->Select Components,进入组件配置界面,选择 RealThread, 然后根3.1.5版本的,然后点击 OK 按钮

java modbustcp协议传输汉字_#include_18


这时会新增Software Packs展开就可以看见添加的RealThread.RT_Thread,勾选相应内容

java modbustcp协议传输汉字_#include_19


RCC配置

java modbustcp协议传输汉字_网络_20


SYS配置

java modbustcp协议传输汉字_服务器_21


设置NVIC

java modbustcp协议传输汉字_#include_22

USART1配置

java modbustcp协议传输汉字_#include_23

GPIO选择b15串口,用来点亮LED灯

java modbustcp协议传输汉字_#include_24


设置TIM3

java modbustcp协议传输汉字_服务器_25


时钟树配置

java modbustcp协议传输汉字_服务器_26


生成项目

java modbustcp协议传输汉字_服务器_27


java modbustcp协议传输汉字_网络_28

二、Keil代码编写

1.添加AHT文件

java modbustcp协议传输汉字_#include_29


将AHT添加到项目中

java modbustcp协议传输汉字_服务器_30


java modbustcp协议传输汉字_High_31


修改AHT20-21_DEMO_V1_3.c

/*******************************************/
/*@????:??????????          */
/*@??:?????????                */
/*@??:V1.2                              */
/*******************************************/
//#include "main.h" 
#include "AHT20.h" 
#include "gpio.h"
#include "i2c.h"


void Delay_N10us(uint32_t t)//????
{
  uint32_t k;

   while(t--)
  {
    for (k = 0; k < 2; k++);//110
  }
}

void SensorDelay_us(uint32_t t)//????
{
		
	for(t = t-2; t>0; t--)
	{
		Delay_N10us(1);
	}
}

void Delay_4us(void)		//????
{	
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);
}
void Delay_5us(void)		//????
{	
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);

}

void Delay_1ms(uint32_t t)		//????
{
   while(t--)
  {
    SensorDelay_us(1000);//??1ms
  }
}


//void AHT20_Clock_Init(void)		//????
//{
//	RCC_APB2PeriphClockCmd(CC_APB2Periph_GPIOB,ENABLE);
//}

void SDA_Pin_Output_High(void)   //?PB7????? , ???????, PB7??I2C?SDA
{
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//????
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_7,GPIO_PIN_SET);
}

void SDA_Pin_Output_Low(void)  //?P7?????  ???????
{
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//????
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_7,GPIO_PIN_RESET);
}

void SDA_Pin_IN_FLOATING(void)  //SDA???????
{
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_INPUT;//??
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init( GPIOB,&GPIO_InitStruct);
}


void SCL_Pin_Output_High(void) //SCL?????,P14??I2C?SCL
{
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_SET);
}

void SCL_Pin_Output_Low(void) //SCL?????
{
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_RESET);
}

void Init_I2C_Sensor_Port(void) //???I2C??,??????
{	
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//????
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_15,GPIO_PIN_SET);

	
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//????
	GPIO_InitStruct.Pin = GPIO_PIN_6;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_15,GPIO_PIN_SET);
	
}
void I2C_Start(void)		 //I2C????START??
{
	SDA_Pin_Output_High();
	SensorDelay_us(8);
	SCL_Pin_Output_High();
	SensorDelay_us(8);
	SDA_Pin_Output_Low();
	SensorDelay_us(8);
	SCL_Pin_Output_Low();
	SensorDelay_us(8);   
}


void AHT20_WR_Byte(uint8_t Byte) //?AHT20?????
{
	uint8_t Data,N,i;	
	Data=Byte;
	i = 0x80;
	for(N=0;N<8;N++)
	{
		SCL_Pin_Output_Low(); 
		Delay_4us();	
		if(i&Data)
		{
			SDA_Pin_Output_High();
		}
		else
		{
			SDA_Pin_Output_Low();
		}	
			
    SCL_Pin_Output_High();
		Delay_4us();
		Data <<= 1;
		 
	}
	SCL_Pin_Output_Low();
	SensorDelay_us(8);   
	SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);	
}	


uint8_t AHT20_RD_Byte(void)//?AHT20??????
{
		uint8_t Byte,i,a;
	Byte = 0;
	SCL_Pin_Output_Low();
	
	SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);	
	
	for(i=0;i<8;i++)
	{
    SCL_Pin_Output_High();
		
		Delay_5us();
		a=0;
		
		//if(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_15)) a=1;
		if(HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_7)) a=1;
		Byte = (Byte<<1)|a;
		
		//SCL_Pin_Output_Low();
		HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_RESET);
		Delay_5us();
	}
  SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);	
	return Byte;
}


uint8_t Receive_ACK(void)   //?AHT20?????ACK
{
	uint16_t CNT;
	CNT = 0;
	SCL_Pin_Output_Low();	
	SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);	
	SCL_Pin_Output_High();	
	SensorDelay_us(8);	
	while((HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_7))  && CNT < 100) 
	CNT++;
	if(CNT == 100)
	{
		return 0;
	}
 	SCL_Pin_Output_Low();	
	SensorDelay_us(8);	
	return 1;
}

void Send_ACK(void)		  //????ACK??
{
	SCL_Pin_Output_Low();	
	SensorDelay_us(8);	
	SDA_Pin_Output_Low();
	SensorDelay_us(8);	
	SCL_Pin_Output_High();	
	SensorDelay_us(8);
	SCL_Pin_Output_Low();	
	SensorDelay_us(8);
	SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);
}

void Send_NOT_ACK(void)	//?????ACK
{
	SCL_Pin_Output_Low();	
	SensorDelay_us(8);
	SDA_Pin_Output_High();
	SensorDelay_us(8);
	SCL_Pin_Output_High();	
	SensorDelay_us(8);		
	SCL_Pin_Output_Low();	
	SensorDelay_us(8);
    SDA_Pin_Output_Low();
	SensorDelay_us(8);
}

void Stop_I2C(void)	  //??????
{
	SDA_Pin_Output_Low();
	SensorDelay_us(8);
	SCL_Pin_Output_High();	
	SensorDelay_us(8);
	SDA_Pin_Output_High();
	SensorDelay_us(8);
}

uint8_t AHT20_Read_Status(void)//??AHT20??????
{

	uint8_t Byte_first;	
	I2C_Start();
	AHT20_WR_Byte(0x71);
	Receive_ACK();
	Byte_first = AHT20_RD_Byte();
	Send_NOT_ACK();
	Stop_I2C();
	return Byte_first;
}

uint8_t AHT20_Read_Cal_Enable(void)  //??cal enable??????
{
	uint8_t val = 0;//ret = 0,
  val = AHT20_Read_Status();
	 if((val & 0x68)==0x08)
		 return 1;
   else  return 0;
 }

void AHT20_SendAC(void) //?AHT20??AC??
{

	I2C_Start();
	AHT20_WR_Byte(0x70);
	Receive_ACK();
	AHT20_WR_Byte(0xac);//0xAC????
	Receive_ACK();
	AHT20_WR_Byte(0x33);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	Stop_I2C();

}

//CRC????:CRC8/MAXIM
//???:X8+X5+X4+1
//Poly:0011 0001  0x31
//????????? 1000 1100 0x8c
//C????:
uint8_t Calc_CRC8(uint8_t *message,uint8_t Num)
{
	uint8_t i;
	uint8_t byte;
	uint8_t crc=0xFF;
  for(byte=0; byte<Num; byte++)
  {
    crc^=(message[byte]);
    for(i=8;i>0;--i)
    {
      if(crc&0x80) crc=(crc<<1)^0x31;
      else crc=(crc<<1);
    }
  }
        return crc;
}

void AHT20_Read_CTdata(uint32_t *ct) //??CRC??,????AHT20????????
{
		volatile uint8_t  Byte_1th=0;
	volatile uint8_t  Byte_2th=0;
	volatile uint8_t  Byte_3th=0;
	volatile uint8_t  Byte_4th=0;
	volatile uint8_t  Byte_5th=0;
	volatile uint8_t  Byte_6th=0;
	 uint32_t RetuData = 0;
	uint16_t cnt = 0;
	AHT20_SendAC();//?AHT10??AC??
	Delay_1ms(80);//??80ms??	
    cnt = 0;
	while(((AHT20_Read_Status()&0x80)==0x80))//????bit[7]?0,???????,??1,?????
	{
		SensorDelay_us(1508);
		if(cnt++>=100)
		{
		 break;
		 }
	}
	I2C_Start();
	AHT20_WR_Byte(0x71);
	Receive_ACK();
	Byte_1th = AHT20_RD_Byte();//???,??????0x98,??????,bit[7]?1;???0x1C,??0x0C,??0x08???????,bit[7]?0
	Send_ACK();
	Byte_2th = AHT20_RD_Byte();//??
	Send_ACK();
	Byte_3th = AHT20_RD_Byte();//??
	Send_ACK();
	Byte_4th = AHT20_RD_Byte();//??/??
	Send_ACK();
	Byte_5th = AHT20_RD_Byte();//??
	Send_ACK();
	Byte_6th = AHT20_RD_Byte();//??
	Send_NOT_ACK();
	Stop_I2C();

	RetuData = (RetuData|Byte_2th)<<8;
	RetuData = (RetuData|Byte_3th)<<8;
	RetuData = (RetuData|Byte_4th);
	RetuData =RetuData >>4;
	ct[0] = RetuData;//??
	RetuData = 0;
	RetuData = (RetuData|Byte_4th)<<8;
	RetuData = (RetuData|Byte_5th)<<8;
	RetuData = (RetuData|Byte_6th);
	RetuData = RetuData&0xfffff;
	ct[1] =RetuData; //??

}


void AHT20_Read_CTdata_crc(uint32_t *ct) //CRC???,??AHT20????????
{
		volatile uint8_t  Byte_1th=0;
	volatile uint8_t  Byte_2th=0;
	volatile uint8_t  Byte_3th=0;
	volatile uint8_t  Byte_4th=0;
	volatile uint8_t  Byte_5th=0;
	volatile uint8_t  Byte_6th=0;
	volatile uint8_t  Byte_7th=0;
	 uint32_t RetuData = 0;
	 uint16_t cnt = 0;
	// uint8_t  CRCDATA=0;
	 uint8_t  CTDATA[6]={0};//??CRC????
	
	AHT20_SendAC();//?AHT10??AC??
	Delay_1ms(80);//??80ms??	
    cnt = 0;
	while(((AHT20_Read_Status()&0x80)==0x80))//????bit[7]?0,???????,??1,?????
	{
		SensorDelay_us(1508);
		if(cnt++>=100)
		{
		 break;
		}
	}
	
	I2C_Start();

	AHT20_WR_Byte(0x71);
	Receive_ACK();
	CTDATA[0]=Byte_1th = AHT20_RD_Byte();//???,??????0x98,??????,bit[7]?1;???0x1C,??0x0C,??0x08???????,bit[7]?0
	Send_ACK();
	CTDATA[1]=Byte_2th = AHT20_RD_Byte();//??
	Send_ACK();
	CTDATA[2]=Byte_3th = AHT20_RD_Byte();//??
	Send_ACK();
	CTDATA[3]=Byte_4th = AHT20_RD_Byte();//??/??
	Send_ACK();
	CTDATA[4]=Byte_5th = AHT20_RD_Byte();//??
	Send_ACK();
	CTDATA[5]=Byte_6th = AHT20_RD_Byte();//??
	Send_ACK();
	Byte_7th = AHT20_RD_Byte();//CRC??
	Send_NOT_ACK();                           //??: ?????NAK
	Stop_I2C();
	
	if(Calc_CRC8(CTDATA,6)==Byte_7th)
	{
	RetuData = (RetuData|Byte_2th)<<8;
	RetuData = (RetuData|Byte_3th)<<8;
	RetuData = (RetuData|Byte_4th);
	RetuData =RetuData >>4;
	ct[0] = RetuData;//??
	RetuData = 0;
	RetuData = (RetuData|Byte_4th)<<8;
	RetuData = (RetuData|Byte_5th)<<8;
	RetuData = (RetuData|Byte_6th);
	RetuData = RetuData&0xfffff;
	ct[1] =RetuData; //??
		
	}
	else
	{
		ct[0]=0x00;
		ct[1]=0x00;//???????,????????????
	}//CRC??
}


void AHT20_Init(void)   //???AHT20
{	
	Init_I2C_Sensor_Port();
	I2C_Start();
	AHT20_WR_Byte(0x70);
	Receive_ACK();
	AHT20_WR_Byte(0xa8);//0xA8??NOR????
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	Stop_I2C();

	Delay_1ms(10);//??10ms??

	I2C_Start();
	AHT20_WR_Byte(0x70);
	Receive_ACK();
	AHT20_WR_Byte(0xbe);//0xBE?????,AHT20???????0xBE,   AHT10???????0xE1
	Receive_ACK();
	AHT20_WR_Byte(0x08);//?????bit[3]?1,?????
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	Stop_I2C();
	Delay_1ms(10);//??10ms??
}
void JH_Reset_REG(uint8_t addr)
{
	
	uint8_t Byte_first,Byte_second,Byte_third;
	I2C_Start();
	AHT20_WR_Byte(0x70);//???0x70
	Receive_ACK();
	AHT20_WR_Byte(addr);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	Stop_I2C();

	Delay_1ms(5);//??5ms??
	I2C_Start();
	AHT20_WR_Byte(0x71);//
	Receive_ACK();
	Byte_first = AHT20_RD_Byte();
	Send_ACK();
	Byte_second = AHT20_RD_Byte();
	Send_ACK();
	Byte_third = AHT20_RD_Byte();
	Send_NOT_ACK();
	Stop_I2C();
	
  Delay_1ms(10);//??10ms??
	I2C_Start();
	AHT20_WR_Byte(0x70);///
	Receive_ACK();
	AHT20_WR_Byte(0xB0|addr);//?????
	Receive_ACK();
	AHT20_WR_Byte(Byte_second);
	Receive_ACK();
	AHT20_WR_Byte(Byte_third);
	Receive_ACK();
	Stop_I2C();
	
	Byte_second=0x00;
	Byte_third =0x00;
}

void AHT20_Start_Init(void)
{
	JH_Reset_REG(0x1b);
	JH_Reset_REG(0x1c);
	JH_Reset_REG(0x1e);
}

修改AHT20-21_DEMO_V1_3.h

#ifndef _AHT20_DEMO_
#define _AHT20_DEMO_

#include "main.h"  

void Delay_N10us(uint32_t t);//????
void SensorDelay_us(uint32_t t);//????
void Delay_4us(void);		//????
void Delay_5us(void);		//????
void Delay_1ms(uint32_t t);	
void AHT20_Clock_Init(void);		//????
void SDA_Pin_Output_High(void)  ; //?PB15????? , ???????, PB15??I2C?SDA
void SDA_Pin_Output_Low(void);  //?P15?????  ???????
void SDA_Pin_IN_FLOATING(void);  //SDA???????
void SCL_Pin_Output_High(void); //SCL?????,P14??I2C?SCL
void SCL_Pin_Output_Low(void); //SCL?????
void Init_I2C_Sensor_Port(void); //???I2C??,??????
void I2C_Start(void);		 //I2C????START??
void AHT20_WR_Byte(uint8_t Byte); //?AHT20?????
uint8_t AHT20_RD_Byte(void);//?AHT20??????
uint8_t Receive_ACK(void);   //?AHT20?????ACK
void Send_ACK(void)	;	  //????ACK??
void Send_NOT_ACK(void);	//?????ACK
void Stop_I2C(void);	  //??????
uint8_t AHT20_Read_Status(void);//??AHT20??????
uint8_t AHT20_Read_Cal_Enable(void);  //??cal enable??????
void AHT20_SendAC(void); //?AHT20??AC??
uint8_t Calc_CRC8(uint8_t *message,uint8_t Num);
void AHT20_Read_CTdata(uint32_t *ct); //??CRC??,????AHT20????????
void AHT20_Read_CTdata_crc(uint32_t *ct); //CRC???,??AHT20????????
void AHT20_Init(void);   //???AHT20
void JH_Reset_REG(uint8_t addr);///?????
void AHT20_Start_Init(void);///?????????????
#endif

2.移植freeModebusRTU

下载链接:https://github.com/cwalter-at/freemodbus

解压并打开刚刚下载的文件,点进demo里,新建一个STM32MB文件夹将BARE文件夹里的文件全部复制到刚刚建立的STM32MB文件夹里再把modbus文件夹全部复制到刚刚新建的STM32MB文件夹

java modbustcp协议传输汉字_#include_32


打开项目里的MDK-ARM文件,将开始新建的STM32MB文件复制到这里

java modbustcp协议传输汉字_网络_33


3.添加至项目

新建名为MB和MB_Port的组,MB内添加STM32MB文件夹下modbus文件夹内所有文件,MB_Port内添加STM32MB文件夹下port文件夹内所有.c文件以及根目录的demo.c文件:

java modbustcp协议传输汉字_#include_34


java modbustcp协议传输汉字_#include_35


java modbustcp协议传输汉字_网络_36


4.修改代码

在Application/USER文件夹下新建app_rt_thread.c文件,并添加以下代码:

#include "rtthread.h"
#include "main.h"
#include "stdio.h"
#include "usart.h"
#include "AHT20-21_DEMO_V1_3.h" 
#include "mb.h"
#include "mbport.h"
 
struct rt_thread led1_thread;
rt_uint8_t rt_led1_thread_stack[128];
void led1_task_entry(void *parameter);
 
 
//初始化线程函数
void MX_RT_Thread_Init(void)
{
	//初始化LED1线程
	rt_thread_init(&led1_thread,"led1",led1_task_entry,RT_NULL,&rt_led1_thread_stack[0],sizeof(rt_led1_thread_stack),3,20);
	//开启线程调度
	rt_thread_startup(&led1_thread);
}
 
//主任务
void MX_RT_Thread_Process(void)
{
	( void )eMBPoll(  );//启动modbus侦听

}
 
//LED1任务
void led1_task_entry(void *parameter)
{
	while(1)
	{
		HAL_GPIO_WritePin(GPIOB,GPIO_PIN_15, GPIO_PIN_RESET);
		rt_thread_delay(500);
		HAL_GPIO_WritePin(GPIOB,GPIO_PIN_15, GPIO_PIN_SET);
		rt_thread_delay(500);
	}
}

修改Middlewares/RT-Thread/RTOS/kernel文件夹下的board.c文件,将串口USART2改为为USART1:

java modbustcp协议传输汉字_#include_37


修改main.c文件

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2022 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "dma.h"
#include "i2c.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"
#include "mb.h"
#include "mbport.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdio.h>
#include "AHT20-21_DEMO_V1_3.h" 
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
extern void MX_RT_Thread_Init(void);
extern void MX_RT_Thread_Process(void);
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_I2C1_Init();
  MX_USART1_UART_Init();
  MX_TIM3_Init();
	AHT20_Init();
	eMBInit( MB_RTU, 0x01, 1, 115200, MB_PAR_NONE);//初始化modbus,走modbusRTU,从站地址为0x01,端口为1。
	eMBEnable(  );//使能modbus
  /* USER CODE BEGIN 2 */
 MX_RT_Thread_Init();
 
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */
		( void )eMBPoll(  );//启动modbus侦听
    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

修改 portserial.c文件:

/*
 * FreeModbus Libary: BARE Port
 * Copyright (C) 2006 Christian Walter <wolti@sil.at>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 * File: $Id$
 */

#include "port.h"

/* ----------------------- Modbus includes ----------------------------------*/
#include "mb.h"
#include "mbport.h"
#include "usart.h"

/* ----------------------- static functions ---------------------------------*/
void prvvUARTTxReadyISR( void );
void prvvUARTRxISR( void );

/* ----------------------- Start implementation -----------------------------*/
void
vMBPortSerialEnable( BOOL xRxEnable, BOOL xTxEnable )
{
    /* If xRXEnable enable serial receive interrupts. If xTxENable enable
     * transmitter empty interrupts.
     */
	 if (xRxEnable)															//将串口收发中断和modbus联系起来,下面的串口改为自己使能的串口
			{
				__HAL_UART_ENABLE_IT(&huart1,UART_IT_RXNE);	//我用的是串口1,故为&huart1
			}
		else
			{
				__HAL_UART_DISABLE_IT(&huart1,UART_IT_RXNE);
			}
		if (xTxEnable)
			{
				__HAL_UART_ENABLE_IT(&huart1,UART_IT_TXE);
			}
		else
			{
				__HAL_UART_DISABLE_IT(&huart1,UART_IT_TXE);
			}	
}

BOOL
xMBPortSerialInit( UCHAR ucPORT, ULONG ulBaudRate, UCHAR ucDataBits, eMBParity eParity )
{
    return TRUE;
}

BOOL
xMBPortSerialPutByte( CHAR ucByte )
{
    /* Put a byte in the UARTs transmit buffer. This function is called
     * by the protocol stack if pxMBFrameCBTransmitterEmpty( ) has been
     * called. */
	if(HAL_UART_Transmit (&huart1 ,(uint8_t *)&ucByte,1,0x01) != HAL_OK )	//添加发送一位代码
			   return FALSE ;
			else
    return TRUE;
}

BOOL
xMBPortSerialGetByte( CHAR * pucByte )
{
    /* Return the byte in the UARTs receive buffer. This function is called
     * by the protocol stack after pxMBFrameCBByteReceived( ) has been called.
     */
	if(HAL_UART_Receive (&huart1 ,(uint8_t *)pucByte,1,0x01) != HAL_OK )//添加接收一位代码
			    return FALSE ;
	   else
    return TRUE;
}

/* Create an interrupt handler for the transmit buffer empty interrupt
 * (or an equivalent) for your target processor. This function should then
 * call pxMBFrameCBTransmitterEmpty( ) which tells the protocol stack that
 * a new character can be sent. The protocol stack will then call 
 * xMBPortSerialPutByte( ) to send the character.
 */
void prvvUARTTxReadyISR( void )
{
    pxMBFrameCBTransmitterEmpty(  );
}

/* Create an interrupt handler for the receive interrupt for your target
 * processor. This function should then call pxMBFrameCBByteReceived( ). The
 * protocol stack will then call xMBPortSerialGetByte( ) to retrieve the
 * character.
 */
void prvvUARTRxISR( void )
{
    pxMBFrameCBByteReceived(  );
}

修改porttimer.c文件:

/*
 * FreeModbus Libary: BARE Port
 * Copyright (C) 2006 Christian Walter <wolti@sil.at>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 * File: $Id$
 */

/* ----------------------- Platform includes --------------------------------*/
#include "port.h"
#include "stm32f1xx_hal.h"
#include "tim.h"
/* ----------------------- Modbus includes ----------------------------------*/
#include "mb.h"
#include "mbport.h"

/* ----------------------- static functions ---------------------------------*/
void prvvTIMERExpiredISR( void );

/* ----------------------- Start implementation -----------------------------*/
BOOL
xMBPortTimersInit( USHORT usTim1Timerout50us )//定时器初始化直接返回TRUE,已经在mian函数初始化过
{
    return  TRUE;
}


inline void
vMBPortTimersEnable(  )//使能定时器中断,我用的是定时器4,所以为&htim4
{
    /* Enable the timer with the timeout passed to xMBPortTimersInit( ) */
				 /* Enable the timer with the timeout passed to xMBPortTimersInit( ) */
		__HAL_TIM_CLEAR_IT(&htim3,TIM_IT_UPDATE);
		__HAL_TIM_ENABLE_IT(&htim3,TIM_IT_UPDATE);
		__HAL_TIM_SET_COUNTER(&htim3,0);
		__HAL_TIM_ENABLE(&htim3);
}

inline void
vMBPortTimersDisable(  )//取消定时器中断
{
    /* Disable any pending timers. */
	__HAL_TIM_DISABLE(&htim3);
			__HAL_TIM_SET_COUNTER(&htim3,0);
			__HAL_TIM_DISABLE_IT(&htim3,TIM_IT_UPDATE);
			__HAL_TIM_CLEAR_IT(&htim3,TIM_IT_UPDATE);

}

/* Create an ISR which is called whenever the timer has expired. This function
 * must then call pxMBPortCBTimerExpired( ) to notify the protocol stack that
 * the timer has expired.
 */
void prvvTIMERExpiredISR( void )//modbus定时器动作,需要在中断内使用
{
    ( void )pxMBPortCBTimerExpired(  );
}

修改port.h文件:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file    stm32f1xx_it.c
  * @brief   Interrupt Service Routines.
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2022 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */

/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32f1xx_it.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN TD */

/* USER CODE END TD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
/* USER CODE BEGIN PFP */
extern void prvvUARTTxReadyISR(void);
extern void prvvUARTRxISR(void);
extern void prvvTIMERExpiredISR( void );

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/* External variables --------------------------------------------------------*/
extern DMA_HandleTypeDef hdma_i2c1_rx;
extern DMA_HandleTypeDef hdma_i2c1_tx;
extern I2C_HandleTypeDef hi2c1;
extern TIM_HandleTypeDef htim3;
extern UART_HandleTypeDef huart1;
/* USER CODE BEGIN EV */

/* USER CODE END EV */

/******************************************************************************/
/*           Cortex-M3 Processor Interruption and Exception Handlers          */
/******************************************************************************/
/**
  * @brief This function handles Non maskable interrupt.
  */
void NMI_Handler(void)
{
  /* USER CODE BEGIN NonMaskableInt_IRQn 0 */

  /* USER CODE END NonMaskableInt_IRQn 0 */
  /* USER CODE BEGIN NonMaskableInt_IRQn 1 */
  while (1)
  {
  }
  /* USER CODE END NonMaskableInt_IRQn 1 */
}

/**
  * @brief This function handles Memory management fault.
  */
void MemManage_Handler(void)
{
  /* USER CODE BEGIN MemoryManagement_IRQn 0 */

  /* USER CODE END MemoryManagement_IRQn 0 */
  while (1)
  {
    /* USER CODE BEGIN W1_MemoryManagement_IRQn 0 */
    /* USER CODE END W1_MemoryManagement_IRQn 0 */
  }
}

/**
  * @brief This function handles Prefetch fault, memory access fault.
  */
void BusFault_Handler(void)
{
  /* USER CODE BEGIN BusFault_IRQn 0 */

  /* USER CODE END BusFault_IRQn 0 */
  while (1)
  {
    /* USER CODE BEGIN W1_BusFault_IRQn 0 */
    /* USER CODE END W1_BusFault_IRQn 0 */
  }
}

/**
  * @brief This function handles Undefined instruction or illegal state.
  */
void UsageFault_Handler(void)
{
  /* USER CODE BEGIN UsageFault_IRQn 0 */

  /* USER CODE END UsageFault_IRQn 0 */
  while (1)
  {
    /* USER CODE BEGIN W1_UsageFault_IRQn 0 */
    /* USER CODE END W1_UsageFault_IRQn 0 */
  }
}

/**
  * @brief This function handles Debug monitor.
  */
void DebugMon_Handler(void)
{
  /* USER CODE BEGIN DebugMonitor_IRQn 0 */

  /* USER CODE END DebugMonitor_IRQn 0 */
  /* USER CODE BEGIN DebugMonitor_IRQn 1 */

  /* USER CODE END DebugMonitor_IRQn 1 */
}

/******************************************************************************/
/* STM32F1xx Peripheral Interrupt Handlers                                    */
/* Add here the Interrupt Handlers for the used peripherals.                  */
/* For the available peripheral interrupt handler names,                      */
/* please refer to the startup file (startup_stm32f1xx.s).                    */
/******************************************************************************/

/**
  * @brief This function handles DMA1 channel6 global interrupt.
  */
void DMA1_Channel6_IRQHandler(void)
{
  /* USER CODE BEGIN DMA1_Channel6_IRQn 0 */

  /* USER CODE END DMA1_Channel6_IRQn 0 */
  HAL_DMA_IRQHandler(&hdma_i2c1_tx);
  /* USER CODE BEGIN DMA1_Channel6_IRQn 1 */

  /* USER CODE END DMA1_Channel6_IRQn 1 */
}

/**
  * @brief This function handles DMA1 channel7 global interrupt.
  */
void DMA1_Channel7_IRQHandler(void)
{
  /* USER CODE BEGIN DMA1_Channel7_IRQn 0 */

  /* USER CODE END DMA1_Channel7_IRQn 0 */
  HAL_DMA_IRQHandler(&hdma_i2c1_rx);
  /* USER CODE BEGIN DMA1_Channel7_IRQn 1 */

  /* USER CODE END DMA1_Channel7_IRQn 1 */
}

/**
  * @brief This function handles TIM3 global interrupt.
  */
void TIM3_IRQHandler(void)
{
  /* USER CODE BEGIN TIM3_IRQn 0 */

  /* USER CODE END TIM3_IRQn 0 */
  HAL_TIM_IRQHandler(&htim3);
  /* USER CODE BEGIN TIM3_IRQn 1 */

  /* USER CODE END TIM3_IRQn 1 */
}

/**
  * @brief This function handles I2C1 event interrupt.
  */
void I2C1_EV_IRQHandler(void)
{
  /* USER CODE BEGIN I2C1_EV_IRQn 0 */

  /* USER CODE END I2C1_EV_IRQn 0 */
  HAL_I2C_EV_IRQHandler(&hi2c1);
  /* USER CODE BEGIN I2C1_EV_IRQn 1 */

  /* USER CODE END I2C1_EV_IRQn 1 */
}

/**
  * @brief This function handles USART1 global interrupt.
  */
void USART1_IRQHandler(void)
{
  /* USER CODE BEGIN USART1_IRQn 0 */

  /* USER CODE END USART1_IRQn 0 */
  HAL_UART_IRQHandler(&huart1);
  /* USER CODE BEGIN USART1_IRQn 1 */
	if(__HAL_UART_GET_IT_SOURCE(&huart1, UART_IT_RXNE)!= RESET) 
		{
			prvvUARTRxISR();//接收中断
		}

	if(__HAL_UART_GET_IT_SOURCE(&huart1, UART_IT_TXE)!= RESET) 
		{
			prvvUARTTxReadyISR();//发送中断
		}
	
  HAL_NVIC_ClearPendingIRQ(USART1_IRQn);
  HAL_UART_IRQHandler(&huart1);
  /* USER CODE END USART1_IRQn 1 */
}

/* USER CODE BEGIN 1 */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)	//定时器中断回调函数,用于连接porttimer.c文件的函数
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the __HAL_TIM_PeriodElapsedCallback could be implemented in the user file
   */
  	prvvTIMERExpiredISR( );
}
/* USER CODE END 1 */

demo.c文件:

/* ----------------------- Modbus includes ----------------------------------*/
#include "mb.h"
#include "mbport.h"
#include "AHT20-21_DEMO_V1_3.h" 

/* ----------------------- Defines ------------------------------------------*/
#define REG_INPUT_START 0
#define REG_INPUT_NREGS 5

/* ----------------------- Static variables ---------------------------------*/
static USHORT   usRegInputStart = REG_INPUT_START;
//static 
uint16_t   usRegInputBuf[REG_INPUT_NREGS];
uint16_t InputBuff[5];
uint32_t CT_data[2]={0,0};
	volatile int  c1,c2,t1,t2;

eMBErrorCode
eMBRegInputCB( UCHAR * pucRegBuffer, USHORT usAddress, USHORT usNRegs )
{
    eMBErrorCode    eStatus = MB_ENOERR;
    int             iRegIndex;
		int             i;
		AHT20_Read_CTdata_crc(CT_data);  //crc校验后,读取AHT20的温度和湿度数据 
		c1 = CT_data[0]*1000/1024/1024;  //计算得到湿度值c1(放大了10倍)
		t1 = CT_data[1]*2000/1024/1024-500;//计算得到温度值t1(放大了10倍)
		c2 = c1/10 + (c1/10)%10;
		t2 = t1/10 + (t1/10)%10;
		InputBuff[0] = t2;
		InputBuff[1] = c2;
		InputBuff[2] = 0x01;
		InputBuff[3] = 0x01;
		
    if( ( usAddress >= REG_INPUT_START )
        && ( usAddress + usNRegs <= REG_INPUT_START + REG_INPUT_NREGS ) )
    {
        iRegIndex = ( int )( usAddress - usRegInputStart );
				for(i=0;i<usNRegs;i++)
				{
					*pucRegBuffer=InputBuff[i+usAddress-1]>>8;
					pucRegBuffer++;
					*pucRegBuffer=InputBuff[i+usAddress-1]&0xff;
					pucRegBuffer++;
				}
    }
    else
    {
        eStatus = MB_ENOREG;
    }

    return eStatus;
}

eMBErrorCode
eMBRegHoldingCB( UCHAR * pucRegBuffer, USHORT usAddress, USHORT usNRegs,
                 eMBRegisterMode eMode )
{
    return MB_ENOREG;
}


eMBErrorCode
eMBRegCoilsCB( UCHAR * pucRegBuffer, USHORT usAddress, USHORT usNCoils,
               eMBRegisterMode eMode )
{
    return MB_ENOREG;
}

eMBErrorCode
eMBRegDiscreteCB( UCHAR * pucRegBuffer, USHORT usAddress, USHORT usNDiscrete )
{
    return MB_ENOREG;
}

然后编译运行