目录

一.索引数据结构

1.1哈希表

1.2有序数组

1.3 搜索树

1.4 InnoDB 的索引模型

索引维护

二.根据索引查询步骤

2.1覆盖索引

2.2最左前缀原则

2.3索引下推

三.索引实践

3.1唯一索引和普通索引如何选择

查询过程

更新过程

change buffer的使用场景

索引选择和实践

3.2MySQL为什么会选错索引

优化器的逻辑

索引选择异常和处理

四.order by如何工作

全字段排序

rowid排序

全字段排序 VS rowid排序

一.索引数据结构

三种常见、也比较简单的数据结构,它们分别是哈希表、有序数组和搜索树。

1.1哈希表

结论先行

  • 哈希表是键-值(key-value)存储数据的结构,key相同时,value就是一个链表,而且链表是往后追加。
  • 哈希索引不是有序的,所以适用于等值查询的场景,比如NoSQL,如果是范围查询,就会非常慢

哈希表是一种以键-值(key-value)存储数据的结构,我们只要输入待查找的键即key,就可以找到其对应的值即Value。哈希的思路很简单,把值放在数组里,用一个哈希函数把key换算成一个确定的位置,然后把value放在数组的这个位置。

不可避免地,多个key值经过哈希函数的换算,会出现同一个值的情况。处理这种情况的一种方法是,拉出一个链表。

假设,你现在维护着一个身份证信息和姓名的表,需要根据身份证号查找对应的名字,这时对应的哈希索引的示意图如下所示:

需要注意的是,图中四个ID_card_n的值并不是递增的,这样做的好处是增加新的User时速度会很快,只需要往后追加。但缺点是,因为不是有序的,所以哈希索引做区间查询的速度是很慢的。

你可以设想下,如果你现在要找身份证号在[ID_card_X, ID_card_Y]这个区间的所有用户,就必须全部扫描一遍了。

所以,哈希表这种结构适用于只有等值查询的场景,比如Memcached及其他一些NoSQL引擎。

1.2有序数组

结论先行:

  • 有序数组是,顾名思义是按照顺序保存的数组,所以缺点来了,插入/修改一条数据成本非常高
  • 查询性能非常好,插入/修改数据成本非常高,所以适用于静态存储,例如归档的数据。

而有序数组在等值查询和范围查询场景中的性能就都非常优秀。还是上面这个根据身份证号查名字的例子,如果我们使用有序数组来实现的话,示意图如下所示:

图2 有序数组示意图

这里我们假设身份证号没有重复,这个数组就是按照身份证号递增的顺序保存的。这时候如果你要查ID_card_n2对应的名字,用二分法就可以快速得到,这个时间复杂度是O(log(N))。

同时很显然,这个索引结构支持范围查询。你要查身份证号在[ID_card_X, ID_card_Y]区间的User,可以先用二分法找到ID_card_X(如果不存在ID_card_X,就找到大于ID_card_X的第一个User),然后向右遍历,直到查到第一个大于ID_card_Y的身份证号,退出循环。

如果仅仅看查询效率,有序数组就是最好的数据结构了。但是,在需要更新数据的时候就麻烦了,你往中间插入一个记录就必须得挪动后面所有的记录,成本太高。

所以,有序数组索引只适用于静态存储引擎,比如你要保存的是2017年某个城市的所有人口信息,这类不会再修改的数据。

1.3 搜索树

结论现行:

 

二叉搜索树也是课本里的经典数据结构了。还是上面根据身份证号查名字的例子,如果我们用二叉搜索树来实现的话,示意图如下所示:

图3 二叉搜索树示意图

二叉搜索树的特点是:每个节点的左儿子小于父节点,父节点又小于右儿子。这样如果你要查ID_card_n2的话,按照图中的搜索顺序就是按照UserA -> UserC -> UserF -> User2这个路径得到。这个时间复杂度是O(log(N))。

当然为了维持O(log(N))的查询复杂度,你就需要保持这棵树是平衡二叉树。为了做这个保证,更新的时间复杂度也是O(log(N))。

树可以有二叉,也可以有多叉。多叉树就是每个节点有多个儿子,儿子之间的大小保证从左到右递增。二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。其原因是,索引不止存在内存中,还要写到磁盘上。

你可以想象一下一棵100万节点的平衡二叉树,树高20。一次查询可能需要访问20个数据块。在机械硬盘时代,从磁盘随机读一个数据块需要10 ms左右的寻址时间。也就是说,对于一个100万行的表,如果使用二叉树来存储,单独访问一个行可能需要20个10 ms的时间,这个查询可真够慢的。

为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N叉”树。这里,“N叉”树中的“N”取决于数据块的大小。

以InnoDB的一个整数字段索引为例,这个N差不多是1200。这棵树高是4的时候,就可以存1200的3次方个值,这已经17亿了。考虑到树根的数据块总是在内存中的,一个10亿行的表上一个整数字段的索引,查找一个值最多只需要访问3次磁盘。其实,树的第二层也有很大概率在内存中,那么访问磁盘的平均次数就更少了。

N叉树由于在读写上的性能优点,以及适配磁盘的访问模式,已经被广泛应用在数据库引擎中了。

不管是哈希还是有序数组,或者N叉树,它们都是不断迭代、不断优化的产物或者解决方案。数据库技术发展到今天,跳表、LSM树等数据结构也被用于引擎设计中,这里我就不再一一展开了。

你心里要有个概念,数据库底层存储的核心就是基于这些数据模型的。每碰到一个新数据库,我们需要先关注它的数据模型,这样才能从理论上分析出这个数据库的适用场景。

截止到这里,我用了半篇文章的篇幅和你介绍了不同的数据结构,以及它们的适用场景,你可能会觉得有些枯燥。但是,我建议你还是要多花一些时间来理解这部分内容,毕竟这是数据库处理数据的核心概念之一,在分析问题的时候会经常用到。当你理解了索引的模型后,就会发现在分析问题的时候会有一个更清晰的视角,体会到引擎设计的精妙之处。

现在,我们一起进入相对偏实战的内容吧。

在MySQL中,索引是在存储引擎层实现的,所以并没有统一的索引标准,即不同存储引擎的索引的工作方式并不一样。而即使多个存储引擎支持同一种类型的索引,其底层的实现也可能不同。由于InnoDB存储引擎在MySQL数据库中使用最为广泛,所以下面我就以InnoDB为例,和你分析一下其中的索引模型。

1.4 InnoDB 的索引模型

结论先行:

  • 讨论索引数据结构,每次的顺序,二叉树(左右不平衡)-->平衡二叉树(树高问题) --> B Tree(数据分散)--> B+ Tree
  • B+ Tree叶子节点才会存数据,B+树是平衡树,它查找任意节点所耗费的时间都是完全相同的,比较的次数=B+树的高度

在InnoDB中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。又因为前面我们提到的,InnoDB使用了B+树索引模型,所以数据都是存储在B+树中的。

每一个索引在InnoDB里面对应一棵B+树。

假设,我们有一个主键列为ID的表,表中有字段k,并且在k上有索引。

这个表的建表语句是:

mysql> create table T( id int primary key, k int not null, name varchar(16), index (k))engine=InnoDB;

表中R1~R5的(ID,k)值分别为(100,1)、(200,2)、(300,3)、(500,5)和(600,6),两棵树的示例示意图如下。

图4 InnoDB的索引组织结构

从图中不难看出,根据叶子节点的内容,索引类型分为主键索引和非主键索引。

主键索引的叶子节点存的是整行数据。在InnoDB里,主键索引也被称为聚簇索引(clustered index)。

非主键索引的叶子节点内容是主键的值。在InnoDB里,非主键索引也被称为二级索引(secondary index)。

根据上面的索引结构说明,我们来讨论一个问题:基于主键索引和普通索引的查询有什么区别?

  • 如果语句是select * from T where ID=500,即主键查询方式,则只需要搜索ID这棵B+树;
  • 如果语句是select * from T where k=5,即普通索引查询方式,则需要先搜索k索引树,得到ID的值为500,再到ID索引树搜索一次。这个过程称为回表。

也就是说,基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询。

索引维护

B+树为了维护索引有序性,在插入新值的时候需要做必要的维护。以上面这个图为例,如果插入新的行ID值为700,则只需要在R5的记录后面插入一个新记录。如果新插入的ID值为400,就相对麻烦了,需要逻辑上挪动后面的数据,空出位置。

而更糟的情况是,如果R5所在的数据页已经满了,根据B+树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去。这个过程称为页分裂。在这种情况下,性能自然会受影响。

除了性能外,页分裂操作还影响数据页的利用率。原本放在一个页的数据,现在分到两个页中,整体空间利用率降低大约50%。

当然有分裂就有合并。当相邻两个页由于删除了数据,利用率很低之后,会将数据页做合并。合并的过程,可以认为是分裂过程的逆过程。

基于上面的索引维护过程说明,我们来讨论一个案例:

你可能在一些建表规范里面见到过类似的描述,要求建表语句里一定要有自增主键。当然事无绝对,我们来分析一下哪些场景下应该使用自增主键,而哪些场景下不应该。

自增主键是指自增列上定义的主键,在建表语句中一般是这么定义的: NOT NULL PRIMARY KEY AUTO_INCREMENT。

插入新记录的时候可以不指定ID的值,系统会获取当前ID最大值加1作为下一条记录的ID值。

也就是说,自增主键的插入数据模式,正符合了我们前面提到的递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。

而有业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高。

除了考虑性能外,我们还可以从存储空间的角度来看。假设你的表中确实有一个唯一字段,比如字符串类型的身份证号,那应该用身份证号做主键,还是用自增字段做主键呢?

由于每个非主键索引的叶子节点上都是主键的值。如果用身份证号做主键,那么每个二级索引的叶子节点占用约20个字节,而如果用整型做主键,则只要4个字节,如果是长整型(bigint)则是8个字节。

显然,主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。

所以,从性能和存储空间方面考量,自增主键往往是更合理的选择。

有没有什么场景适合用业务字段直接做主键的呢?还是有的。比如,有些业务的场景需求是这样的:

  1. 只有一个索引;
  2. 该索引必须是唯一索引。

你一定看出来了,这就是典型的KV场景。

由于没有其他索引,所以也就不用考虑其他索引的叶子节点大小的问题。

这时候我们就要优先考虑上一段提到的“尽量使用主键查询”原则,直接将这个索引设置为主键,可以避免每次查询需要搜索两棵树。

二.根据索引查询步骤

结论先行:

  • 根据索引查询,如果是聚簇索引(主键索引),直接定位到某些行;如果是普通索引,先根据索引定位到主键id,然后根据主键id定位到某行,然后继续知道下一个不满足条件,循环结束;
  • B+ tree索引结构,根据索引的“最左前缀”,来定位记录。
  • 回到主键索引树搜索的过程,我们称为回表
  • select * from tuser where name like '张%' and age=10 and ismale=1 MySQL5.6之前,先根据name查,返回主键,然后回表找到数据行,在对比age;mysql 5.6之后,先判断age等,过滤掉不满足条件的记录,减少回表次数;

在下面这个表T中,如果我执行 select * from T where k between 3 and 5,需要执行几次树的搜索操作,会扫描多少行?

下面是这个表的初始化语句。

mysql> create table T ( ID int primary key, k int NOT NULL DEFAULT 0, s varchar(16) NOT NULL DEFAULT '', index k(k)) engine=InnoDB;

insert into T values(100,1, 'aa'),(200,2,'bb'),(300,3,'cc'),(500,5,'ee'),(600,6,'ff'),(700,7,'gg');

图1 InnoDB的索引组织结构

现在,我们一起来看看这条SQL查询语句的执行流程:

  1. 在k索引树上找到k=3的记录,取得 ID = 300;
  2. 再到ID索引树查到ID=300对应的R3;
  3. 在k索引树取下一个值k=5,取得ID=500;
  4. 再回到ID索引树查到ID=500对应的R4;
  5. 在k索引树取下一个值k=6,不满足条件,循环结束。

在这个过程中,回到主键索引树搜索的过程,我们称为回表。可以看到,这个查询过程读了k索引树的3条记录(步骤1、3和5),回表了两次(步骤2和4)。

在这个例子中,由于查询结果所需要的数据只在主键索引上有,所以不得不回表。那么,有没有可能经过索引优化,避免回表过程呢?

2.1覆盖索引

如果执行的语句是select ID from T where k between 3 and 5,这时只需要查ID的值,而ID的值已经在k索引树上了,因此可以直接提供查询结果,不需要回表。也就是说,在这个查询里面,索引k已经“覆盖了”我们的查询需求,我们称为覆盖索引。

由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。

需要注意的是,在引擎内部使用覆盖索引在索引k上其实读了三个记录,R3~R5(对应的索引k上的记录项),但是对于MySQL的Server层来说,它就是找引擎拿到了两条记录,因此MySQL认为扫描行数是2。

备注:关于如何查看扫描行数的问题,我将会在第16文章《如何正确地显示随机消息?》中,和你详细讨论。

基于上面覆盖索引的说明,我们来讨论一个问题:在一个市民信息表上,是否有必要将身份证号和名字建立联合索引?

假设这个市民表的定义是这样的:

CREATE TABLE `tuser` ( `id` int(11) NOT NULL, `id_card` varchar(32) DEFAULT NULL, `name` varchar(32) DEFAULT NULL, `age` int(11) DEFAULT NULL, `ismale` tinyint(1) DEFAULT NULL, PRIMARY KEY (`id`), KEY `id_card` (`id_card`), KEY `name_age` (`name`,`age`) ) ENGINE=InnoDB

我们知道,身份证号是市民的唯一标识。也就是说,如果有根据身份证号查询市民信息的需求,我们只要在身份证号字段上建立索引就够了。而再建立一个(身份证号、姓名)的联合索引,是不是浪费空间?

如果现在有一个高频请求,要根据市民的身份证号查询他的姓名,这个联合索引就有意义了。它可以在这个高频请求上用到覆盖索引,不再需要回表查整行记录,减少语句的执行时间。

当然,索引字段的维护总是有代价的。因此,在建立冗余索引来支持覆盖索引时就需要权衡考虑了。这正是业务DBA,或者称为业务数据架构师的工作。

2.2最左前缀原则

看到这里你一定有一个疑问,如果为每一种查询都设计一个索引,索引是不是太多了。如果我现在要按照市民的身份证号去查他的家庭地址呢?虽然这个查询需求在业务中出现的概率不高,但总不能让它走全表扫描吧?反过来说,单独为一个不频繁的请求创建一个(身份证号,地址)的索引又感觉有点浪费。应该怎么做呢?

这里,我先和你说结论吧。B+树这种索引结构,可以利用索引的“最左前缀”,来定位记录。

为了直观地说明这个概念,我们用(name,age)这个联合索引来分析。

图2 (name,age)索引示意图

可以看到,索引项是按照索引定义里面出现的字段顺序排序的。

当你的逻辑需求是查到所有名字是“张三”的人时,可以快速定位到ID4,然后向后遍历得到所有需要的结果。

如果你要查的是所有名字第一个字是“张”的人,你的SQL语句的条件是"where name like ‘张%’"。这时,你也能够用上这个索引,查找到第一个符合条件的记录是ID3,然后向后遍历,直到不满足条件为止。

可以看到,不只是索引的全部定义,只要满足最左前缀,就可以利用索引来加速检索。这个最左前缀可以是联合索引的最左N个字段,也可以是字符串索引的最左M个字符。

基于上面对最左前缀索引的说明,我们来讨论一个问题:在建立联合索引的时候,如何安排索引内的字段顺序。

这里我们的评估标准是,索引的复用能力。因为可以支持最左前缀,所以当已经有了(a,b)这个联合索引后,一般就不需要单独在a上建立索引了。因此,第一原则是,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。

所以现在你知道了,这段开头的问题里,我们要为高频请求创建(身份证号,姓名)这个联合索引,并用这个索引支持“根据身份证号查询地址”的需求。

那么,如果既有联合查询,又有基于a、b各自的查询呢?查询条件里面只有b的语句,是无法使用(a,b)这个联合索引的,这时候你不得不维护另外一个索引,也就是说你需要同时维护(a,b)、(b) 这两个索引。

这时候,我们要考虑的原则就是空间了。比如上面这个市民表的情况,name字段是比age字段大的 ,那我就建议你创建一个(name,age)的联合索引和一个(age)的单字段索引。

2.3索引下推

上一段我们说到满足最左前缀原则的时候,最左前缀可以用于在索引中定位记录。这时,你可能要问,那些不符合最左前缀的部分,会怎么样呢?

我们还是以市民表的联合索引(name, age)为例。如果现在有一个需求:检索出表中“名字第一个字是张,而且年龄是10岁的所有男孩”。那么,SQL语句是这么写的:

mysql> select * from tuser where name like '张%' and age=10 and ismale=1;

你已经知道了前缀索引规则,所以这个语句在搜索索引树的时候,只能用 “张”,找到第一个满足条件的记录ID3。当然,这还不错,总比全表扫描要好。

然后呢?

当然是判断其他条件是否满足。

在MySQL 5.6之前,只能从ID3开始一个个回表。到主键索引上找出数据行,再对比字段值。

而MySQL 5.6 引入的索引下推优化(index condition pushdown), 可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。

图3和图4,是这两个过程的执行流程图。

图3 无索引下推执行流程

图4 索引下推执行流程

在图3和4这两个图里面,每一个虚线箭头表示回表一次。

图3中,在(name,age)索引里面我特意去掉了age的值,这个过程InnoDB并不会去看age的值,只是按顺序把“name第一个字是’张’”的记录一条条取出来回表。因此,需要回表4次。

图4跟图3的区别是,InnoDB在(name,age)索引内部就判断了age是否等于10,对于不等于10的记录,直接判断并跳过。在我们的这个例子中,只需要对ID4、ID5这两条记录回表取数据判断,就只需要回表2次。

三.索引实践

3.1唯一索引和普通索引如何选择

查询过程

假设,执行查询的语句是 select id from T where k=5。这个查询语句在索引树上查找的过程,先是通过B+树从树根开始,按层搜索到叶子节点,也就是图中右下角的这个数据页,然后可以认为数据页内部通过二分法来定位记录。

  • 对于普通索引来说,查找到满足条件的第一个记录(5,500)后,需要查找下一个记录,直到碰到第一个不满足k=5条件的记录。
  • 对于唯一索引来说,由于索引定义了唯一性,查找到第一个满足条件的记录后,就会停止继续检索。

那么,这个不同带来的性能差距会有多少呢?答案是,微乎其微。

你知道的,InnoDB的数据是按数据页为单位来读写的。也就是说,当需要读一条记录的时候,并不是将这个记录本身从磁盘读出来,而是以页为单位,将其整体读入内存。在InnoDB中,每个数据页的大小默认是16KB。

因为引擎是按页读写的,所以说,当找到k=5的记录的时候,它所在的数据页就都在内存里了。那么,对于普通索引来说,要多做的那一次“查找和判断下一条记录”的操作,就只需要一次指针寻找和一次计算。

当然,如果k=5这个记录刚好是这个数据页的最后一个记录,那么要取下一个记录,必须读取下一个数据页,这个操作会稍微复杂一些。

但是,我们之前计算过,对于整型字段,一个数据页可以放近千个key,因此出现这种情况的概率会很低。所以,我们计算平均性能差异时,仍可以认为这个操作成本对于现在的CPU来说可以忽略不计。

更新过程

为了说明普通索引和唯一索引对更新语句性能的影响这个问题,我需要先跟你介绍一下change buffer。

当需要更新一个数据页时,如果数据页在内存中就直接更新,而如果这个数据页还没有在内存中的话,在不影响数据一致性的前提下,InnoDB会将这些更新操作缓存在change buffer中,这样就不需要从磁盘中读入这个数据页了。在下次查询需要访问这个数据页的时候,将数据页读入内存,然后执行change buffer中与这个页有关的操作。通过这种方式就能保证这个数据逻辑的正确性。

需要说明的是,虽然名字叫作change buffer,实际上它是可以持久化的数据。也就是说,change buffer在内存中有拷贝,也会被写入到磁盘上。

将change buffer中的操作应用到原数据页,得到最新结果的过程称为merge。除了访问这个数据页会触发merge外,系统有后台线程会定期merge。在数据库正常关闭(shutdown)的过程中,也会执行merge操作。

显然,如果能够将更新操作先记录在change buffer,减少读磁盘,语句的执行速度会得到明显的提升。而且,数据读入内存是需要占用buffer pool的,所以这种方式还能够避免占用内存,提高内存利用率。

那么,什么条件下可以使用change buffer呢?

对于唯一索引来说,所有的更新操作都要先判断这个操作是否违反唯一性约束。比如,要插入(4,400)这个记录,就要先判断现在表中是否已经存在k=4的记录,而这必须要将数据页读入内存才能判断。如果都已经读入到内存了,那直接更新内存会更快,就没必要使用change buffer了。

因此,唯一索引的更新就不能使用change buffer,实际上也只有普通索引可以使用。

change buffer用的是buffer pool里的内存,因此不能无限增大。change buffer的大小,可以通过参数innodb_change_buffer_max_size来动态设置。这个参数设置为50的时候,表示change buffer的大小最多只能占用buffer pool的50%。

现在,你已经理解了change buffer的机制,那么我们再一起来看看如果要在这张表中插入一个新记录(4,400)的话,InnoDB的处理流程是怎样的。

第一种情况是,这个记录要更新的目标页在内存中。这时,InnoDB的处理流程如下:

  • 对于唯一索引来说,找到3和5之间的位置,判断到没有冲突,插入这个值,语句执行结束;
  • 对于普通索引来说,找到3和5之间的位置,插入这个值,语句执行结束。

这样看来,普通索引和唯一索引对更新语句性能影响的差别,只是一个判断,只会耗费微小的CPU时间。

但,这不是我们关注的重点。

第二种情况是,这个记录要更新的目标页不在内存中。这时,InnoDB的处理流程如下:

  • 对于唯一索引来说,需要将数据页读入内存,判断到没有冲突,插入这个值,语句执行结束;
  • 对于普通索引来说,则是将更新记录在change buffer,语句执行就结束了。

将数据从磁盘读入内存涉及随机IO的访问,是数据库里面成本最高的操作之一。change buffer因为减少了随机磁盘访问,所以对更新性能的提升是会很明显的。

之前我就碰到过一件事儿,有个DBA的同学跟我反馈说,他负责的某个业务的库内存命中率突然从99%降低到了75%,整个系统处于阻塞状态,更新语句全部堵住。而探究其原因后,我发现这个业务有大量插入数据的操作,而他在前一天把其中的某个普通索引改成了唯一索引。

change buffer的使用场景

通过上面的分析,你已经清楚了使用change buffer对更新过程的加速作用,也清楚了change buffer只限于用在普通索引的场景下,而不适用于唯一索引。那么,现在有一个问题就是:普通索引的所有场景,使用change buffer都可以起到加速作用吗?

因为merge的时候是真正进行数据更新的时刻,而change buffer的主要目的就是将记录的变更动作缓存下来,所以在一个数据页做merge之前,change buffer记录的变更越多(也就是这个页面上要更新的次数越多),收益就越大。

因此,对于写多读少的业务来说,页面在写完以后马上被访问到的概率比较小,此时change buffer的使用效果最好。这种业务模型常见的就是账单类、日志类的系统。

反过来,假设一个业务的更新模式是写入之后马上会做查询,那么即使满足了条件,将更新先记录在change buffer,但之后由于马上要访问这个数据页,会立即触发merge过程。这样随机访问IO的次数不会减少,反而增加了change buffer的维护代价。所以,对于这种业务模式来说,change buffer反而起到了副作用。

索引选择和实践

回到我们文章开头的问题,普通索引和唯一索引应该怎么选择。其实,这两类索引在查询能力上是没差别的,主要考虑的是对更新性能的影响。所以,我建议你尽量选择普通索引。

如果所有的更新后面,都马上伴随着对这个记录的查询,那么你应该关闭change buffer。而在其他情况下,change buffer都能提升更新性能。

在实际使用中,你会发现,普通索引和change buffer的配合使用,对于数据量大的表的更新优化还是很明显的。

特别地,在使用机械硬盘时,change buffer这个机制的收效是非常显著的。所以,当你有一个类似“历史数据”的库,并且出于成本考虑用的是机械硬盘时,那你应该特别关注这些表里的索引,尽量使用普通索引,然后把change buffer 尽量开大,以确保这个“历史数据”表的数据写入速度。

3.2MySQL为什么会选错索引

结论先行:

  • 选择索引是优化器选择的,不是存储引擎选择
  • 选择索引的条件:根据扫描行数判断;多个索引,会根据索引类型选择;
  • 扫描行数判断:采样获取索引基数(索引基数:就是索引区分度,一个索引上的不同值)
  • 选错索引的原因:就是索引统计信息不准确;多个索引选错了,优化器误判
  • 由于索引统计信息不准确导致的问题,你可以用analyze table来解决
  • 优化器误判:用force index来强行指定索引,也可以通过修改语句来引导优化器,还可以通过增加或者删除索引来绕过这个问题。

优化器的逻辑

选择索引是优化器的工作,而优化器选择索引的目的,是找到一个最优的执行方案,并用最小的代价去执行语句。在数据库里面,扫描行数是影响执行代价的因素之一。扫描的行数越少,意味着访问磁盘数据的次数越少,消耗的CPU资源越少。当然,扫描行数并不是唯一的判断标准,优化器还会结合是否使用临时表、是否排序等因素进行综合判断。

扫描行数是怎么判断的?

MySQL在真正开始执行语句之前,并不能精确地知道满足这个条件的记录有多少条,而只能根据统计信息来估算记录数。

这个统计信息就是索引的“区分度”。显然,一个索引上不同的值越多,这个索引的区分度就越好。而一个索引上不同的值的个数,我们称之为“基数”(cardinality)。也就是说,这个基数越大,索引的区分度越好。

我们可以使用show index方法,看到一个索引的基数。如图4所示,就是表t的show index 的结果 。虽然这个表的每一行的三个字段值都是一样的,但是在统计信息中,这三个索引的基数值并不同,而且其实都不准确。

图4 表t的show index 结果

那么,MySQL是怎样得到索引的基数的呢?这里,我给你简单介绍一下MySQL采样统计的方法。

为什么要采样统计呢?因为把整张表取出来一行行统计,虽然可以得到精确的结果,但是代价太高了,所以只能选择“采样统计”。

采样统计的时候,InnoDB默认会选择N个数据页,统计这些页面上的不同值,得到一个平均值,然后乘以这个索引的页面数,就得到了这个索引的基数。

而数据表是会持续更新的,索引统计信息也不会固定不变。所以,当变更的数据行数超过1/M的时候,会自动触发重新做一次索引统计。

在MySQL中,有两种存储索引统计的方式,可以通过设置参数innodb_stats_persistent的值来选择:

  • 设置为on的时候,表示统计信息会持久化存储。这时,默认的N是20,M是10。
  • 设置为off的时候,表示统计信息只存储在内存中。这时,默认的N是8,M是16。

由于是采样统计,所以不管N是20还是8,这个基数都是很容易不准的。

但,这还不是全部。

你可以从图4中看到,这次的索引统计值(cardinality列)虽然不够精确,但大体上还是差不多的,选错索引一定还有别的原因。

其实索引统计只是一个输入,对于一个具体的语句来说,优化器还要判断,执行这个语句本身要扫描多少行。

接下来,我们再一起看看优化器预估的,这两个语句的扫描行数是多少。

图5 意外的explain结果

rows这个字段表示的是预计扫描行数。

其中,Q1的结果还是符合预期的,rows的值是104620;但是Q2的rows值是37116,偏差就大了。而图1中我们用explain命令看到的rows是只有10001行,是这个偏差误导了优化器的判断。

到这里,可能你的第一个疑问不是为什么不准,而是优化器为什么放着扫描37000行的执行计划不用,却选择了扫描行数是100000的执行计划呢?

这是因为,如果使用索引a,每次从索引a上拿到一个值,都要回到主键索引上查出整行数据,这个代价优化器也要算进去的。

而如果选择扫描10万行,是直接在主键索引上扫描的,没有额外的代价。

优化器会估算这两个选择的代价,从结果看来,优化器认为直接扫描主键索引更快。当然,从执行时间看来,这个选择并不是最优的。

使用普通索引需要把回表的代价算进去,在图1执行explain的时候,也考虑了这个策略的代价 ,但图1的选择是对的。也就是说,这个策略并没有问题。

所以冤有头债有主,MySQL选错索引,这件事儿还得归咎到没能准确地判断出扫描行数。至于为什么会得到错误的扫描行数,这个原因就作为课后问题,留给你去分析了。

既然是统计信息不对,那就修正。analyze table t 命令,可以用来重新统计索引信息。我们来看一下执行效果。

图6 执行analyze table t 命令恢复的explain结果

这回对了。

所以在实践中,如果你发现explain的结果预估的rows值跟实际情况差距比较大,可以采用这个方法来处理。

其实,如果只是索引统计不准确,通过analyze命令可以解决很多问题,但是前面我们说了,优化器可不止是看扫描行数。

依然是基于这个表t,我们看看另外一个语句:

mysql> select * from t where (a between 1 and 1000) and (b between 50000 and 100000) order by b limit 1;

从条件上看,这个查询没有符合条件的记录,因此会返回空集合。

在开始执行这条语句之前,你可以先设想一下,如果你来选择索引,会选择哪一个呢?

为了便于分析,我们先来看一下a、b这两个索引的结构图。

图7 a、b索引的结构图

如果使用索引a进行查询,那么就是扫描索引a的前1000个值,然后取到对应的id,再到主键索引上去查出每一行,然后根据字段b来过滤。显然这样需要扫描1000行。

如果使用索引b进行查询,那么就是扫描索引b的最后50001个值,与上面的执行过程相同,也是需要回到主键索引上取值再判断,所以需要扫描50001行。

所以你一定会想,如果使用索引a的话,执行速度明显会快很多。那么,下面我们就来看看到底是不是这么一回事儿。

图8是执行explain的结果。

mysql> explain select * from t where (a between 1 and 1000) and (b between 50000 and 100000) order by b limit 1;

图8 使用explain方法查看执行计划 2

可以看到,返回结果中key字段显示,这次优化器选择了索引b,而rows字段显示需要扫描的行数是50198。

从这个结果中,你可以得到两个结论:

  1. 扫描行数的估计值依然不准确;
  2. 这个例子里MySQL又选错了索引。

索引选择异常和处理

其实大多数时候优化器都能找到正确的索引,但偶尔你还是会碰到我们上面举例的这两种情况:原本可以执行得很快的SQL语句,执行速度却比你预期的慢很多,你应该怎么办呢?

一种方法是,像我们第一个例子一样,采用force index强行选择一个索引。MySQL会根据词法解析的结果分析出可能可以使用的索引作为候选项,然后在候选列表中依次判断每个索引需要扫描多少行。如果force index指定的索引在候选索引列表中,就直接选择这个索引,不再评估其他索引的执行代价。

我们来看看第二个例子。刚开始分析时,我们认为选择索引a会更好。现在,我们就来看看执行效果:

图9 使用不同索引的语句执行耗时

可以看到,原本语句需要执行2.23秒,而当你使用force index(a)的时候,只用了0.05秒,比优化器的选择快了40多倍。

也就是说,优化器没有选择正确的索引,force index起到了“矫正”的作用。

不过很多程序员不喜欢使用force index,一来这么写不优美,二来如果索引改了名字,这个语句也得改,显得很麻烦。而且如果以后迁移到别的数据库的话,这个语法还可能会不兼容。

但其实使用force index最主要的问题还是变更的及时性。因为选错索引的情况还是比较少出现的,所以开发的时候通常不会先写上force index。而是等到线上出现问题的时候,你才会再去修改SQL语句、加上force index。但是修改之后还要测试和发布,对于生产系统来说,这个过程不够敏捷。

所以,数据库的问题最好还是在数据库内部来解决。那么,在数据库里面该怎样解决呢?

既然优化器放弃了使用索引a,说明a还不够合适,所以第二种方法就是,我们可以考虑修改语句,引导MySQL使用我们期望的索引。比如,在这个例子里,显然把“order by b limit 1” 改成 “order by b,a limit 1” ,语义的逻辑是相同的。

我们来看看改之后的效果:

图10 order by b,a limit 1 执行结果

之前优化器选择使用索引b,是因为它认为使用索引b可以避免排序(b本身是索引,已经是有序的了,如果选择索引b的话,不需要再做排序,只需要遍历),所以即使扫描行数多,也判定为代价更小。

现在order by b,a 这种写法,要求按照b,a排序,就意味着使用这两个索引都需要排序。因此,扫描行数成了影响决策的主要条件,于是此时优化器选了只需要扫描1000行的索引a。

当然,这种修改并不是通用的优化手段,只是刚好在这个语句里面有limit 1,因此如果有满足条件的记录, order by b limit 1和order by b,a limit 1 都会返回b是最小的那一行,逻辑上一致,才可以这么做。

如果你觉得修改语义这件事儿不太好,这里还有一种改法,图11是执行效果。

mysql> select * from (select * from t where (a between 1 and 1000) and (b between 50000 and 100000) order by b limit 100)alias limit 1;

图11 改写SQL的explain

在这个例子里,我们用limit 100让优化器意识到,使用b索引代价是很高的。其实是我们根据数据特征诱导了一下优化器,也不具备通用性。

第三种方法是,在有些场景下,我们可以新建一个更合适的索引,来提供给优化器做选择,或删掉误用的索引。

不过,在这个例子中,我没有找到通过新增索引来改变优化器行为的方法。这种情况其实比较少,尤其是经过DBA索引优化过的库,再碰到这个bug,找到一个更合适的索引一般比较难。

如果我说还有一个方法是删掉索引b,你可能会觉得好笑。但实际上我碰到过两次这样的例子,最终是DBA跟业务开发沟通后,发现这个优化器错误选择的索引其实根本没有必要存在,于是就删掉了这个索引,优化器也就重新选择到了正确的索引。

四.order by如何工作

结论先行:

执行顺序:

  1. 初始化sort_buffer,确定放入name、city、age这三个字段;
  2. 从索引city找到第一个满足city='杭州’条件的主键id,也就是图中的ID_X;
  3. 到主键id索引取出整行,取name、city、age三个字段的值,存入sort_buffer中;
  4. 从索引city取下一个记录的主键id;
  5. 重复步骤3、4直到city的值不满足查询条件为止,对应的主键id也就是图中的ID_Y;
  6. 对sort_buffer中的数据按照字段name做快速排序;
  7. 按照排序结果取前1000行返回给客户端。

全字段排序

假设这个表的部分定义是这样的:

CREATE TABLE `t` ( `id` int(11) NOT NULL, `city` varchar(16) NOT NULL, `name` varchar(16) NOT NULL, `age` int(11) NOT NULL, `addr` varchar(128) DEFAULT NULL, PRIMARY KEY (`id`), KEY `city` (`city`) ) ENGINE=InnoDB;

这时,你的SQL语句可以这么写:

select city,name,age from t where city='杭州' order by name limit 1000 ;

前面我们介绍过索引,所以你现在就很清楚了,为避免全表扫描,我们需要在city字段加上索引。

在city字段上创建索引之后,我们用explain命令来看看这个语句的执行情况。


图1 使用explain命令查看语句的执行情况

Extra这个字段中的“Using filesort”表示的就是需要排序,MySQL会给每个线程分配一块内存用于排序,称为sort_buffer。

为了说明这个SQL查询语句的执行过程,我们先来看一下city这个索引的示意图。


图2 city字段的索引示意图

从图中可以看到,满足city='杭州’条件的行,是从ID_X到ID_(X+N)的这些记录。

通常情况下,这个语句执行流程如下所示 :

  1. 初始化sort_buffer,确定放入name、city、age这三个字段;
  2. 从索引city找到第一个满足city='杭州’条件的主键id,也就是图中的ID_X;
  3. 到主键id索引取出整行,取name、city、age三个字段的值,存入sort_buffer中;
  4. 从索引city取下一个记录的主键id;
  5. 重复步骤3、4直到city的值不满足查询条件为止,对应的主键id也就是图中的ID_Y;
  6. 对sort_buffer中的数据按照字段name做快速排序;
  7. 按照排序结果取前1000行返回给客户端。

我们暂且把这个排序过程,称为全字段排序,执行流程的示意图如下所示,下一篇文章中我们还会用到这个排序。


图3 全字段排序

图中“按name排序”这个动作,可能在内存中完成,也可能需要使用外部排序,这取决于排序所需的内存和参数sort_buffer_size。

sort_buffer_size,就是MySQL为排序开辟的内存(sort_buffer)的大小。如果要排序的数据量小于sort_buffer_size,排序就在内存中完成。但如果排序数据量太大,内存放不下,则不得不利用磁盘临时文件辅助排序。

你可以用下面介绍的方法,来确定一个排序语句是否使用了临时文件。

/* 打开optimizer_trace,只对本线程有效 */ SET optimizer_trace='enabled=on'; /* @a保存Innodb_rows_read的初始值 */ select VARIABLE_VALUE into @a from performance_schema.session_status where variable_name = 'Innodb_rows_read'; /* 执行语句 */ select city, name,age from t where city='杭州' order by name limit 1000; /* 查看 OPTIMIZER_TRACE 输出 */ SELECT * FROM `information_schema`.`OPTIMIZER_TRACE`G /* @b保存Innodb_rows_read的当前值 */ select VARIABLE_VALUE into @b from performance_schema.session_status where variable_name = 'Innodb_rows_read'; /* 计算Innodb_rows_read差值 */ select @b-@a;

这个方法是通过查看 OPTIMIZER_TRACE 的结果来确认的,你可以从 number_of_tmp_files中看到是否使用了临时文件。


图4 全排序的OPTIMIZER_TRACE部分结果

number_of_tmp_files表示的是,排序过程中使用的临时文件数。你一定奇怪,为什么需要12个文件?内存放不下时,就需要使用外部排序,外部排序一般使用归并排序算法。可以这么简单理解,MySQL将需要排序的数据分成12份,每一份单独排序后存在这些临时文件中。然后把这12个有序文件再合并成一个有序的大文件。

如果sort_buffer_size超过了需要排序的数据量的大小,number_of_tmp_files就是0,表示排序可以直接在内存中完成。

否则就需要放在临时文件中排序。sort_buffer_size越小,需要分成的份数越多,number_of_tmp_files的值就越大。

接下来,我再和你解释一下图4中其他两个值的意思。

我们的示例表中有4000条满足city='杭州’的记录,所以你可以看到 examined_rows=4000,表示参与排序的行数是4000行。

sort_mode 里面的packed_additional_fields的意思是,排序过程对字符串做了“紧凑”处理。即使name字段的定义是varchar(16),在排序过程中还是要按照实际长度来分配空间的。

同时,最后一个查询语句select @b-@a 的返回结果是4000,表示整个执行过程只扫描了4000行。

这里需要注意的是,为了避免对结论造成干扰,我把internal_tmp_disk_storage_engine设置成MyISAM。否则,select @b-@a的结果会显示为4001。

这是因为查询OPTIMIZER_TRACE这个表时,需要用到临时表,而internal_tmp_disk_storage_engine的默认值是InnoDB。如果使用的是InnoDB引擎的话,把数据从临时表取出来的时候,会让Innodb_rows_read的值加1。

rowid排序

在上面这个算法过程里面,只对原表的数据读了一遍,剩下的操作都是在sort_buffer和临时文件中执行的。但这个算法有一个问题,就是如果查询要返回的字段很多的话,那么sort_buffer里面要放的字段数太多,这样内存里能够同时放下的行数很少,要分成很多个临时文件,排序的性能会很差。

所以如果单行很大,这个方法效率不够好。

那么,如果MySQL认为排序的单行长度太大会怎么做呢?

接下来,我来修改一个参数,让MySQL采用另外一种算法。

SET max_length_for_sort_data = 16;

max_length_for_sort_data,是MySQL中专门控制用于排序的行数据的长度的一个参数。它的意思是,如果单行的长度超过这个值,MySQL就认为单行太大,要换一个算法。

city、name、age 这三个字段的定义总长度是36,我把max_length_for_sort_data设置为16,我们再来看看计算过程有什么改变。

新的算法放入sort_buffer的字段,只有要排序的列(即name字段)和主键id。

但这时,排序的结果就因为少了city和age字段的值,不能直接返回了,整个执行流程就变成如下所示的样子:

  1. 初始化sort_buffer,确定放入两个字段,即name和id;
  2. 从索引city找到第一个满足city='杭州’条件的主键id,也就是图中的ID_X;
  3. 到主键id索引取出整行,取name、id这两个字段,存入sort_buffer中;
  4. 从索引city取下一个记录的主键id;
  5. 重复步骤3、4直到不满足city='杭州’条件为止,也就是图中的ID_Y;
  6. 对sort_buffer中的数据按照字段name进行排序;
  7. 遍历排序结果,取前1000行,并按照id的值回到原表中取出city、name和age三个字段返回给客户端。

这个执行流程的示意图如下,我把它称为rowid排序。


图5 rowid排序

对比图3的全字段排序流程图你会发现,rowid排序多访问了一次表t的主键索引,就是步骤7。

需要说明的是,最后的“结果集”是一个逻辑概念,实际上MySQL服务端从排序后的sort_buffer中依次取出id,然后到原表查到city、name和age这三个字段的结果,不需要在服务端再耗费内存存储结果,是直接返回给客户端的。

根据这个说明过程和图示,你可以想一下,这个时候执行select @b-@a,结果会是多少呢?

现在,我们就来看看结果有什么不同。

首先,图中的examined_rows的值还是4000,表示用于排序的数据是4000行。但是select @b-@a这个语句的值变成5000了。

因为这时候除了排序过程外,在排序完成后,还要根据id去原表取值。由于语句是limit 1000,因此会多读1000行。


图6 rowid排序的OPTIMIZER_TRACE部分输出

从OPTIMIZER_TRACE的结果中,你还能看到另外两个信息也变了。

  • sort_mode变成了,表示参与排序的只有name和id这两个字段。
  • number_of_tmp_files变成10了,是因为这时候参与排序的行数虽然仍然是4000行,但是每一行都变小了,因此需要排序的总数据量就变小了,需要的临时文件也相应地变少了。

全字段排序 VS rowid排序

我们来分析一下,从这两个执行流程里,还能得出什么结论。

如果MySQL实在是担心排序内存太小,会影响排序效率,才会采用rowid排序算法,这样排序过程中一次可以排序更多行,但是需要再回到原表去取数据。

如果MySQL认为内存足够大,会优先选择全字段排序,把需要的字段都放到sort_buffer中,这样排序后就会直接从内存里面返回查询结果了,不用再回到原表去取数据。

这也就体现了MySQL的一个设计思想:如果内存够,就要多利用内存,尽量减少磁盘访问。

对于InnoDB表来说,rowid排序会要求回表多造成磁盘读,因此不会被优先选择。

这个结论看上去有点废话的感觉,但是你要记住它,下一篇文章我们就会用到。

看到这里,你就了解了,MySQL做排序是一个成本比较高的操作。那么你会问,是不是所有的order by都需要排序操作呢?如果不排序就能得到正确的结果,那对系统的消耗会小很多,语句的执行时间也会变得更短。

其实,并不是所有的order by语句,都需要排序操作的。从上面分析的执行过程,我们可以看到,MySQL之所以需要生成临时表,并且在临时表上做排序操作,其原因是原来的数据都是无序的。

你可以设想下,如果能够保证从city这个索引上取出来的行,天然就是按照name递增排序的话,是不是就可以不用再排序了呢?

确实是这样的。

所以,我们可以在这个市民表上创建一个city和name的联合索引,对应的SQL语句是:

alter table t add index city_user(city, name);

作为与city索引的对比,我们来看看这个索引的示意图。


图7 city和name联合索引示意图

在这个索引里面,我们依然可以用树搜索的方式定位到第一个满足city='杭州’的记录,并且额外确保了,接下来按顺序取“下一条记录”的遍历过程中,只要city的值是杭州,name的值就一定是有序的。

这样整个查询过程的流程就变成了:

  1. 从索引(city,name)找到第一个满足city='杭州’条件的主键id;
  2. 到主键id索引取出整行,取name、city、age三个字段的值,作为结果集的一部分直接返回;
  3. 从索引(city,name)取下一个记录主键id;
  4. 重复步骤2、3,直到查到第1000条记录,或者是不满足city='杭州’条件时循环结束。


图8 引入(city,name)联合索引后,查询语句的执行计划

可以看到,这个查询过程不需要临时表,也不需要排序。接下来,我们用explain的结果来印证一下。


图9 引入(city,name)联合索引后,查询语句的执行计划

从图中可以看到,Extra字段中没有Using filesort了,也就是不需要排序了。而且由于(city,name)这个联合索引本身有序,所以这个查询也不用把4000行全都读一遍,只要找到满足条件的前1000条记录就可以退出了。也就是说,在我们这个例子里,只需要扫描1000次。

既然说到这里了,我们再往前讨论,这个语句的执行流程有没有可能进一步简化呢?不知道你还记不记得,我在第5篇文章《 深入浅出索引(下)》中,和你介绍的覆盖索引。

这里我们可以再稍微复习一下。覆盖索引是指,索引上的信息足够满足查询请求,不需要再回到主键索引上去取数据。

按照覆盖索引的概念,我们可以再优化一下这个查询语句的执行流程。

针对这个查询,我们可以创建一个city、name和age的联合索引,对应的SQL语句就是:

alter table t add index city_user_age(city, name, age);

这时,对于city字段的值相同的行来说,还是按照name字段的值递增排序的,此时的查询语句也就不再需要排序了。这样整个查询语句的执行流程就变成了:

  1. 从索引(city,name,age)找到第一个满足city='杭州’条件的记录,取出其中的city、name和age这三个字段的值,作为结果集的一部分直接返回;
  2. 从索引(city,name,age)取下一个记录,同样取出这三个字段的值,作为结果集的一部分直接返回;
  3. 重复执行步骤2,直到查到第1000条记录,或者是不满足city='杭州’条件时循环结束。


图10 引入(city,name,age)联合索引后,查询语句的执行流程

然后,我们再来看看explain的结果。


图11 引入(city,name,age)联合索引后,查询语句的执行计划

可以看到,Extra字段里面多了“Using index”,表示的就是使用了覆盖索引,性能上会快很多。

当然,这里并不是说要为了每个查询能用上覆盖索引,就要把语句中涉及的字段都建上联合索引,毕竟索引还是有维护代价的。这是一个需要权衡的决定。