一、收获

1.这是假期的第七周,主要学习了学习hdfs的相关知识。

HDFS采用了主从(Master/Slave)结构模型,一个HDFS集群是由一个NameNode和若干个DataNode组成的。其中NameNode作为主服务器,管理文件系统的命名空间和客户端对文件的访问操作;集群中的DataNode管理存储的数据。

  • NameNode
  1. 存储文件的metadata,运行时所有数据都保存到内存,整个HDFS可存储的文件数受限于NameNode的内存大小
  2. 一个Block在NameNode中对应一条记录(一般一个block占用150字节),如果是大量的小文件,会消耗大量内存。同时map task的数量是由splits来决定的,所以用MapReduce处理大量的小文件时,就会产生过多的map task,线程管理开销将会增加作业时间。处理大量小文件的速度远远小于处理同等大小的大文件的速度。因此Hadoop建议存储大文件
  3. 数据会定时保存到本地磁盘,但不保存block的位置信息,而是由DataNode注册时上报和运行时维护(NameNode中与DataNode相关的信息并不保存到NameNode的文件系统中,而是NameNode每次重启后,动态重建)
  4. NameNode失效则整个HDFS都失效了,所以要保证NameNode的可用性
  • Secondary NameNode
  1. 定时与NameNode进行同步(定期合并文件系统镜像和编辑日志,然后把合并后的传给NameNode,替换其镜像,并清空编辑日志,类似于CheckPoint机制),但NameNode失效后仍需要手工将其设置成主机
  • DataNode
  1. 保存具体的block数据
  2. 负责数据的读写操作和复制操作
  3. DataNode启动时会向NameNode报告当前存储的数据块信息,后续也会定时报告修改信息
  4. DataNode之间会进行通信,复制数据块,保证数据的冗余性

2.每天主要花费1个小时来学习,并且会根据当天学习任务的多少与难度进行调整。


 

二、下周目标

下周简单做一个web项目,复习一下javaweb


 

三、遇到问题

对于hadoop的一些具体应用不够了解,实践少