1.单机redis的分布式锁

关于代码的详细解释见代码注释。
单机redis详细解释:

public class RedisTool {

    private static final String LOCK_SUCCESS = "OK";
    private static final String SET_IF_NOT_EXIST = "NX";
    private static final String SET_WITH_EXPIRE_TIME = "PX";
    private static final Long RELEASE_SUCCESS = 1L;

    /**
     * 获取分布式锁(加锁代码)
     * @param jedis Redis客户端
     * @param lockKey 锁
     * @param requestId 请求标识
     * @param expireTime 超期时间
     * @return 是否获取成功
     */
    public static boolean getDistributedLock(Jedis jedis, String lockKey, String requestId, int expireTime) {

		/**
    	 * redis分布式锁:
    	 * (1)如果一个key被设置value以后再使用setNX就不会成功set数据
    	 * (2)设置超时时间是防止获取锁的clientA断电了而无法释放锁,那么clientA所有的锁都无法释放
    	 * (3)一个set命令解决上面的问题,保持redis两个命令的原子性,否则多线程情况下会出setNX执行成功以后,超时时间设置失败,锁无法释放的问题
   	 	 */
        String result = jedis.set(lockKey, requestId, SET_IF_NOT_EXIST, SET_WITH_EXPIRE_TIME, expireTime);

        if (LOCK_SUCCESS.equals(result)) {
            return true;
        }
        return false;
    }

    /**
     * 释放分布式锁(解锁代码)
     * @param jedis Redis客户端
     * @param lockKey 锁
     * @param requestId 请求标识
     * @return 是否释放成功
     */
    public static boolean releaseDistributedLock(Jedis jedis, String lockKey, String requestId) {

		// lua脚本将比较 keys与value是否相等
        String script = "if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else               return 0 end";
        
        Object result = jedis.eval(script, Collections.singletonList(lockKey), C                                                   ollections.singletonList(requestId));

        if (RELEASE_SUCCESS.equals(result)) {
            return true;
        }
        return false;

    }

2. 可重入锁

可重入锁参考:https://crazyfzw.github.io/2019/04/15/distributed-locks-with-redis/
Redisson是一个在Redis的基础上实现的Java驻内存数据网格(In-Memory Data Grid)。它不仅提供了一系列的分布式的Java常用对象,还实现了可重入锁(Reentrant Lock)、公平锁(Fair Lock、联锁(MultiLock)、 红锁(RedLock)、 读写锁(ReadWriteLock)等,还提供了许多分布式服务。Redisson提供了使用Redis的最简单和最便捷的方法。Redisson的宗旨是促进使用者对Redis的关注分离(Separation of Concern),从而让使用者能够将精力更集中地放在处理业务逻辑上。

Redisson 支持单点模式、主从模式、哨兵模式、集群模式,这里以单点模式为例:

// 1.构造redisson实现分布式锁必要的Config
Config config = new Config();
config.useSingleServer().setAddress("redis://127.0.0.1:5379").setPassword("123456").setDatabase(0);
// 2.构造RedissonClient
RedissonClient redissonClient = Redisson.create(config);
// 3.获取锁对象实例(无法保证是按线程的顺序获取到)
RLock rLock = redissonClient.getLock(lockKey);
try {
    /**
     * 4.尝试获取锁
     * waitTimeout 尝试获取锁的最大等待时间,超过这个值,则认为获取锁失败
     * leaseTime   锁的持有时间,超过这个时间锁会自动失效(值应设置为大于业务处理的时间,确保在锁有效期内业务能处理完)
     */
    boolean res = rLock.tryLock((long)waitTimeout, (long)leaseTime, TimeUnit.SECONDS);
    if (res) {
        //成功获得锁,在这里处理业务
    }
} catch (Exception e) {
    throw new RuntimeException("aquire lock fail");
}finally{
    //无论如何, 最后都要解锁
    rLock.unlock();
}

获取锁的代码的核心流程:tryLock -> tryAcquire -> org.redisson.RedissonLock#tryLockInnerAsync

redis 重置key 的valuse_加锁


释放锁的过程:org.redisson.RedissonLock#unlockInnerAsync

redis 重置key 的valuse_redis 重置key 的valuse_02

需要特别注意的是,RedissonLock 同样没有解决单节点挂掉的时候,存在丢失锁的风险的问题。而现实情况是有一些场景无法容忍的,所以 Redisson 提供了实现了redlock算法的 RedissonRedLock。

3. Redission红锁

在我们的例子里面我们把N设成5,这是一个比较合理的设置,所以我们需要在5台机器上面或者5台虚拟机上面运行这些实例,这样保证他们不会同时都宕掉。为了取到锁,客户端应该执行以下操作:

  1. 获取当前Unix时间,以毫秒为单位。
  2. 依次尝试从5个实例,使用相同的key和具有唯一性的value(例如UUID)获取锁。当向Redis请求获取锁时,客户端应该设置一个尝试从某个Reids实例获取锁的最大等待时间(超过这个时间,则立马询问下一个实例),这个超时时间应该小于锁的失效时间。
  3. 客户端使用当前时间减去开始获取锁时间(步骤1记录的时间)就得到获取锁消耗的时间。当且仅当从大多数(N/2+1,这里是3个节点)的Redis节点都取到锁,并且使用的总耗时小于锁失效时间时,锁才算获取成功。
  4. 如果取到了锁,key的真正有效时间 = 有效时间(获取锁时设置的key的自动超时时间) - 获取锁的总耗时(询问各个Redis实例的总耗时之和)(步骤3计算的结果)。
  5. 如果因为某些原因,最终获取锁失败(即没有在至少 “N/2+1 ”个Redis实例取到锁或者“获取锁的总耗时”超过了“有效时间”),客户端应该在所有的Redis实例上进行解锁(即便某些Redis实例根本就没有加锁成功,这样可以防止某些节点获取到锁但是客户端没有得到响应而导致接下来的一段时间不能被重新获取锁)。

Redission使用RedLock

Config config1 = new Config();
config1.useSingleServer().setAddress("redis://172.0.0.1:5378").setPassword("a123456").setDatabase(0);
RedissonClient redissonClient1 = Redisson.create(config1);

Config config2 = new Config();
config2.useSingleServer().setAddress("redis://172.0.0.1:5379").setPassword("a123456").setDatabase(0);
RedissonClient redissonClient2 = Redisson.create(config2);

Config config3 = new Config();
config3.useSingleServer().setAddress("redis://172.0.0.1:5380").setPassword("a123456").setDatabase(0);
RedissonClient redissonClient3 = Redisson.create(config3);

/**
 * 获取多个 RLock 对象
 */
RLock lock1 = redissonClient1.getLock(lockKey);
RLock lock2 = redissonClient2.getLock(lockKey);
RLock lock3 = redissonClient3.getLock(lockKey);

/**
 * 根据多个 RLock 对象构建 RedissonRedLock (最核心的差别就在这里)
 */
RedissonRedLock redLock = new RedissonRedLock(lock1, lock2, lock3);

try {
    /**
     * 4.尝试获取锁
     * waitTimeout 尝试获取锁的最大等待时间,超过这个值,则认为获取锁失败
     * leaseTime   锁的持有时间,超过这个时间锁会自动失效(值应设置为大于业务处理的时间,确保在锁有效期内业务能处理完)
     */
    boolean res = redLock.tryLock((long)waitTimeout, (long)leaseTime, TimeUnit.SECONDS);
    if (res) {
        //成功获得锁,在这里处理业务
    }
} catch (Exception e) {
    throw new RuntimeException("aquire lock fail");
}finally{
    //无论如何, 最后都要解锁
    redLock.unlock();
}

加锁核心源码:
RedLock加锁类似于paxos这种分布式一致性算法,当有超过半数的Redis节点加锁成功以后才认为加锁成功。

public boolean tryLock(long waitTime, long leaseTime, TimeUnit unit) throws InterruptedException {
    long newLeaseTime = -1;
    if (leaseTime != -1) {
        newLeaseTime = unit.toMillis(waitTime)*2;
    }
    
    long time = System.currentTimeMillis();
    long remainTime = -1;
    if (waitTime != -1) {
        remainTime = unit.toMillis(waitTime);
    }
    long lockWaitTime = calcLockWaitTime(remainTime);
    /**
     * 1. 允许加锁失败节点个数限制(N-(N/2+1))
     */
    int failedLocksLimit = failedLocksLimit();
    /**
     * 2. 遍历所有节点通过EVAL命令执行lua加锁
     */
    List<RLock> acquiredLocks = new ArrayList<>(locks.size());
    for (ListIterator<RLock> iterator = locks.listIterator(); iterator.hasNext();) {
        RLock lock = iterator.next();
        boolean lockAcquired;
        /**
         *  3.对节点尝试加锁
         */
        try {
            if (waitTime == -1 && leaseTime == -1) {
                lockAcquired = lock.tryLock();
            } else {
                long awaitTime = Math.min(lockWaitTime, remainTime);
                lockAcquired = lock.tryLock(awaitTime, newLeaseTime, TimeUnit.MILLISECONDS);
            }
        } catch (RedisResponseTimeoutException e) {
            // 如果抛出这类异常,为了防止加锁成功,但是响应失败,需要解锁所有节点
            unlockInner(Arrays.asList(lock));
            lockAcquired = false;
        } catch (Exception e) {
            // 抛出异常表示获取锁失败
            lockAcquired = false;
        }
        
        if (lockAcquired) {
            /**
             *4. 如果获取到锁则添加到已获取锁集合中
             */
            acquiredLocks.add(lock);
        } else {
            /**
             * 5. 计算已经申请锁失败的节点是否已经到达 允许加锁失败节点个数限制 (N-(N/2+1))
             * 如果已经到达, 就认定最终申请锁失败,则没有必要继续从后面的节点申请了
             * 因为 Redlock 算法要求至少N/2+1 个节点都加锁成功,才算最终的锁申请成功
             */
            if (locks.size() - acquiredLocks.size() == failedLocksLimit()) {
                break;
            }

            if (failedLocksLimit == 0) {
                unlockInner(acquiredLocks);
                if (waitTime == -1 && leaseTime == -1) {
                    return false;
                }
                failedLocksLimit = failedLocksLimit();
                acquiredLocks.clear();
                // reset iterator
                while (iterator.hasPrevious()) {
                    iterator.previous();
                }
            } else {
                failedLocksLimit--;
            }
        }

        /**
         * 6.计算 目前从各个节点获取锁已经消耗的总时间,如果已经等于最大等待时间,则认定最终申请锁失败,返回false
         */
        if (remainTime != -1) {
            remainTime -= System.currentTimeMillis() - time;
            time = System.currentTimeMillis();
            if (remainTime <= 0) {
                unlockInner(acquiredLocks);
                return false;
            }
        }
    }

    if (leaseTime != -1) {
        List<RFuture<Boolean>> futures = new ArrayList<>(acquiredLocks.size());
        for (RLock rLock : acquiredLocks) {
            RFuture<Boolean> future = ((RedissonLock) rLock).expireAsync(unit.toMillis(leaseTime), TimeUnit.MILLISECONDS);
            futures.add(future);
        }
        
        for (RFuture<Boolean> rFuture : futures) {
            rFuture.syncUninterruptibly();
        }
    }

    /**
     * 7.如果逻辑正常执行完则认为最终申请锁成功,返回true
     */
    return true;
}