把P1.0接入示波器,运行上面的程序,可以看到P1.0输出的波形为周期是3 ms的方波。其中,高电平为2 ms,低电平为1 ms,即for循环结构“for(j=0;j<124;j++) {;}”的执行时间为1 ms。通过改变循环次数,可得到不同时间的延时。当然,也可以不用for循环而用别的语句实现延时。这里讨论的只是确定延时的方法。

2.4 使用反汇编工具计算延时时间

  对于不熟悉示波器的开发人员可用Keil C51中的反汇编工具计算延时时间,在反汇编窗口中可用源程序和汇编程序的混合代码或汇编代码显示目标应用程序。为了说明这种方法,还使用“for (i=0;i<DlyT;i++) {;}”。在程序中加入这一循环结构,首先选择build taget,然后单击start/stop debug session按钮进入程序调试窗口,最后打开Disassembly window,找出与这部分循环结构相对应的汇编代码,具体如下:

  可以看出,0x000F~0x0017一共8条语句,分析语句可以发现并不是每条语句都执行DlyT次。核心循环只有0x0011~0x0017共6条语句,总共8个机器周期,第1次循环先执行“CLRA”和“MOV R6,A”两条语句,需要2个机器周期,每循环1次需要8个机器周期,但最后1次循环需要5个机器周期。DlyT次核心循环语句消耗(2+DlyT×8+5)个机器周期,当系统采用12 MHz时,精度为7 μs。

  当采用while (DlyT--)循环体时,DlyT的值存放在R7中。相对应的汇编代码如下:

DlyT+1)×5个机器周期,即这种循环结构的延时精度为5 μs。

循环语句执行的时间为(

  通过实验发现,如将while (DlyT--)改为while (--DlyT),经过反汇编后得到如下代码:

  C:0x0014DFFE DJNZR7,C:0014//2T

  可以看出,这时代码只有1句,共占用2个机器周期,精度达到2 μs,循环体耗时DlyT×2个机器周期;但这时应该注意,DlyT初始值不能为0。

  这3种循环结构的延时与循环次数的关系如表1所列。

  表1 循环次数与延时时间关系单位:μs

  注意:计算时间时还应加上函数调用和函数返回各2个机器周期时间。

2.5 使用性能分析器计算延时时间

  很多C程序员可能对汇编语言不太熟悉,特别是每个指令执行的时间是很难记忆的,因此,再给出一种使用Keil C51的性能分析器计算延时时间的方法。这里还以前面介绍的for(i=0;i<124;i++)结构为例。使用这种方法时,必须先设置系统所用的晶振频率,选择Optionsfor target中的target选项,在Xtal(MHz)中填入所用晶振的频率。将程序编译后,分别在_point = 1和T_point = 0处设置两个运行断点。选择start/stop debug session按钮进入程序调试窗口,分别打开PerformanceAnalyzer window和Disassembly window。运行程序前,要首先将程序复位,计时器清零;然后按F5键运行程序,从程序效率评估窗口的下部分可以看到程序到了第一个断点,也就是所要算的程序段的开始处,用了389 μs;再按F5键,程序到了第2个断点处也就是所要算的程序段的结束处,此时时间为1 386 μs。最后用结束处的时间减去开始处时间,就得到循环程序段所占用的时间为997μs。

  当然也可以不用打开Performance Analyzerwindow,这时观察左边工具栏秒(SEC)项。全速运行时,时间不变,只有当程序运行到断点处,才显示运行所用的时间。

3 总结

  本文介绍了多种实现并计算延时程序执行时间的方法。使用定时器进行延时是最佳的选择,可以提高MCU工作效率,在无法使用定时器而又需要实现比较精确的延时时,后面介绍的几种方法可以实现不等时间的延时:使用自定义头文件的优点是,可实现任意时间长短的延时,并减少主程序的代码长度,便于对程序的阅读理解和维护。编写延时程序是一项很麻烦的任务,可能需要多次修改才能满足要求。掌握延时程序的编写,能够使程序准确得以执行,这对项目开发有着重要的意义。本文所讨论的几种方法,都是来源于实际项目的开发经验,有着很好的实用性和适应性。

转载于:https://blog.51cto.com/xinduofen/1944714