如何用python绘制简单条形图?
如何用python绘制简单条形图呢?这里离不开matplotlib的使用。
条形图是数据可视化图形中很基础也很常用的一种图,简单解释下:条形图也叫长条图(英语:bar chart),亦称条图(英语:bar graph)、条状图、棒形图、柱状图、条形图表,是一种以长方形的长度为变量的统计图表。
长条图用来比较两个或以上的价值(不同时间或者不同条件),只有一个变量,通常利用于较小的数据集分析。长条图亦可横向排列,或用多维方式表达。那么一个普通的条形图是长什么样子的呢?当!当!当!
就是下图的这个样子:图先亮出来啦,接下来研究这个图是怎么画的吧,先看一下原数据长什么样子:实际画图的流程和画折线图很相近,只是用到的画图函数不一样,绘制条形图的函数():由于这只是最简单的一个条形图,实际上条形图的函数()还有不少可以探索的参数设置,和对折线图函数()的探索差不多,有兴趣的孩子可以自己去进行探索哦。
按照条形长短进行排序展示的条形图当然也可以有其他的设置,比如说上图中的线条高低参差不齐,这是因为x轴的数据是按照学校名称进行排序的,那么可不可以按照分数的高低进行排序呢?
也就是让所有的长方形按照从高到矮或者从矮到高的顺序进行排列?当然可以啦!这里需要强调的是,条的高低排列等信息都是来源于原数据的,要想让条形的顺序发生改变,需要对画图的来源数据进行更改呢!
把原数据逆序排序后截取前十名数据赋值给data_yuwen,作为新的数据源传入画图函数(),画出来的图自然就不一样了。
先看一眼数据长什么样子:根据这个数据源绘制出的图形如下,由于用来画图的数据进行了降序排序操作,所以生成条形图的条也会进行降序排序展示:很多时候,我们常见的条形图还有另一种展现形式,那就是横向的条形图,比较火的那种动态条形图绝大多数也都是横向的条形图,那么横向的条形图如何绘制呢?
理解()主要参数其实也不难,只要清楚()函数中主要参数的作用就可以了!条形图函数中有五个主要参数,分别是x,height,width,bottom,orientation。
其中x控制的是每个条在x轴上位置,height控制的是每个条的长度,width控制的是每个条的宽度,bottom控制的是每个条在y轴方向的起始位置,orientation控制的是条形的方向,是纵向还是横向,默认是纵向的。
通过一个小例子理解下这几个参数的作用:上边的几行代码输出的图形如下:对比着代码和实际输出的条形图,各个主要参数的作用是不是一目了然啦?
横向条形图理解了这几个参数作用后,纵向的条形图转换成横向的条形图就没什么难度了!
需要设置所有条形在x轴的位置都为0,也就全部从最左侧开始画条形;由于是横向条形图,所以实际上条的宽度显示的是数据大小,将width参数设置成原数据中的语文成绩;bottom控制每个条在y轴方向的起始位置,设置bottom=range(10)设置每个条形在y轴的起始位置各不相同避免有条形重叠;height控制的是每个条在y轴方向上的长度,条形图横向设置后,在y轴上的长度失去了衡量数据的意义,所以直接设置一个常数即可;最后设置条形的方向为横向,即orientation=“horizontal”。
温馨提示:数据和标签一定要匹配,即()重点的数据要和plt.yticks()中提取出来的标签一一对应,一旦不匹配,整个图展现的结果就是一个错误的结果!
上述代码生成的条形图如下:感觉上边这种生成横向条形图的方式有点点绕,和人们的习惯认知有点不大一样,难道画一个横向条形图就非得转变自己的习惯认知这么反人类吗?
当然不是的,实际上有更简单的方法绘制一个横向条形图,之所以没有一开始就直接用这种简单的方法,也是为了让大家体会下条形图参数的灵活设置而已,而且如果比较绕的方法都能理解了,简单的方法理解和运用起来就更没有难度了啊!
不卖关子了,我们来认识下和()函数类似的()函数。
()函数是专门绘制水平条形图的函数,主要的参数有:y 控制y轴显示的标签来源width 控制横向条形的长度,即用来进行对比的数据源height 条形的宽度需要设置的参数主要就是这三个,比用()函数绘制水平条形图简单了很多,具体代码如下:效果图:和用()函数绘制的横向条形图一毛一样对不对?
以后有需求绘制横向条形图,尽量用()函数吧,毕竟它是专门绘制这种类型图的,简单好用。
然而实际工作中对于条形图的需求不只是这些,比如例子中只是对各个学校语文成绩的展示,有时候需要各个学科的成绩同时展现在一幅条形图中,有时候也需要绘制堆积条形图对各学科的成绩以及总成绩进行展示,这些图又该如何绘制呢?
其实只要理解了各个参数的含义,绘制这些图也不在话下,至于具体怎么画,且看下回分解啊!
谷歌人工智能写作项目:小发猫
Python中数据可视化的两个库!
1. Matplotlib:是Python中众多数据可视化库的鼻祖,其设计风格与20世纪80年代的商业化程序语言MATLAB十分相似,具有很多强大且复杂的可视化功能;还包含了多种类型的API,可以采用多种方式绘制图标并对图标进行定制typescript类型分析。
2. Seaborn:是基于Matplotlib进行高级封装的可视化库,支持交互式界面,使绘制图表功能变得简单,且图表的色彩更具吸引力。
3. ggplot:是基于Matplotlib并旨在以简单方式提高Matplotlib可视化感染力的库,采用叠加图层的形式绘制图形,比如先绘制坐标轴所在的图层,再绘制点所在的图层,最后绘制线所在的图层,但其并不适用于个性化定制图形。
4. Boken:是一个交互式的可视化库,支持使用Web浏览器展示,可使用快速简单的方式将大型数据集转换成高性能的、可交互的、结构简单的图表。
5. Pygal:是一个可缩放矢量图标库,用于生成可在浏览器中打开的SVG格式的图表,这种图表能够在不同比例的屏幕上自动缩放,方便用户交互。
6. Pyecharts:是一个生成ECharts的库,生成的ECharts凭借良好的交互性、精巧的设计得到了众多开发者的认可。
python 绘制图表matplotlib?
如何使用python制作excel透视曲线图
Excel功能之强大,每个人都会用到。你还在为怎么做数据表烦恼么。Excel高版本自带的数据图表可以满足一般需求,这就是高版本的好处自带很多实用功能减轻繁重的工作。
本文就2010版本的数据视图做个简单的功能介绍,制作一个孩子的各科目每年学习成绩曲线图开启分步阅读模式工具材料:excel2010操作方法01数据源,先做好每年孩子各科目学习成绩的记录02数据透视图,首先要选择数据,然后点击‘插入’-》数据透视表-》数据透视图03选择必要选项,在弹出的对话框中,有两个选项供选择,一个是数据源(可以选择外部数据源,默认是当前选中的数据),一个是视图要显示的位置,可以在当前的表中呈现,也可以在另外一个sheet中展现。
一般情况下我是在当前工作表中呈现,直观,方便。04报错,如果选择了‘现有工作表’,但是‘位置’里为空,这样直接确定是会报错的,因为你还么有选择图标要显示的位置。
05选择需要展示的数据,刚才选择的数据源列都在上面提现出来了,现在是要选择数据视图展示的内容。我们来选择科目、时间、成绩。
06横轴、纵轴调整,图1位置是我们所谓的X轴,图2是我们要显示的几个内容,图3是显示的Y轴数值。
07选择图标样式,步骤6完成之后,默认是柱状图,但是这个不直观,我想要的是曲线走势图,所以可以改变下显示的样式,08完美走势图,看曲线就可以知道小朋友数学、音乐成绩在不断提高,英语成绩波动不大,语文成绩在下滑。
现在市场上有PowerBi或者Tableau可以做很好的图表,那还有人用Python来制作可视化图表吗?有什么优点?
链接: 提取码:yz10Python&Tableau:商业数据分析与可视化。Tableau的程序很容易上手,各公司可以用它将大量数据拖放到数字“画布”上,转眼间就能创建好各种图表。
这一软件的理念是,界面上的数据越容易操控,公司对自己在所在业务领域里的所作所为到底是正确还是错误,就能了解得越透彻。快速分析:在数分钟内完成数据连接和可视化。
Tableau 比现有的其他解决方案快 10 到 100 倍。大数据,任何数据:无论是电子表格、数据库还是 Hadoop 和云服务,任何数据都可以轻松探索。
课程目录:前置课程-Python在咨询、金融、四大等领域的应用以及效率提升Python基础知识Python入门:基于Anaconda与基于Excel的Python安装和界面简单的数学计算Python数据分析-时间序列2-数据操作与绘图Python数据分析-时间序列3-时间序列分解......。
python数据挖掘工具有哪些?
1. Numpy可以供给数组支撑,进行矢量运算,而且高效地处理函数,线性代数处理等。供给真实的数组,比起python内置列表来说, Numpy速度更快。
一起,Scipy、Matplotlib、Pandas等库都是源于 Numpy。由于 Numpy内置函数处理数据速度与C语言同一等级,建议使用时尽量用内置函数。
2.Scipy根据Numpy,可以供给了真实的矩阵支撑,以及大量根据矩阵的数值计算模块,包含:插值运算,线性代数、图画信号,快速傅里叶变换、优化处理、常微分方程求解等。
3. Pandas源于NumPy,供给强壮的数据读写功用,支撑相似SQL的增删改查,数据处理函数十分丰富,而且支撑时间序列剖析功用,灵敏地对数据进行剖析与探索,是python数据发掘,必不可少的东西。
Pandas根本数据结构是Series和DataFrame。Series是序列,相似一维数组,DataFrame相当于一张二维表格,相似二维数组,DataFrame的每一列都是一个Series。
4.Matplotlib数据可视化最常用,也是醉好用的东西之一,python中闻名的绘图库,首要用于2维作图,只需简单几行代码可以生成各式的图表,例如直方图,条形图,散点图等,也可以进行简单的3维绘图。
5.Scikit-LearnScikit-Learn源于NumPy、Scipy和Matplotlib,是一 款功用强壮的机器学习python库,可以供给完整的学习东西箱(数据处理,回归,分类,聚类,猜测,模型剖析等),使用起来简单。
缺乏是没有供给神经网络,以及深度学习等模型。
6.Keras根据Theano的一款深度学习python库,不仅可以用来建立普通神经网络,还能建各种深度学习模型,例如:自编码器、循环神经网络、递归神经网络、卷积神经网络等,重要的是,运转速度几块,对建立各种神经网络模型的过程进行简化,可以答应普通用户,轻松地建立几百个输入节点的深层神经网络,定制程度也十分高。
关于 python数据挖掘工具有哪些,环球青藤小编就和大家分享到这里了,学习是没有尽头的,学习一项技能更是受益终身,因此,只要肯努力学,什么时候开始都不晚。
如若你还想继续了解关于python编程的素材及学习方法等内容,可以点击本站其他文章学习。
Python中数据可视化经典库有哪些?
Python有很多经典的数据可视化库,比较经典的数据可视化库有下面几个。matplotlib是Python编程语言及其数值数学扩展包 NumPy 的可视化操作界面。
它利用通用的图形用户界面工具包,如 Tkinter, wxPython, Qt 或 GTK+,向应用程序嵌入式绘图提供了应用程序接口。
pyplot 是 matplotlib 的一个模块,它提供了一个类似 MATLAB 的接口。 matplotlib 被设计得用起来像 MATLAB,具有使用 Python 的能力。
优点:绘图质量高,可绘制出版物质量级别的图形。
代码够简单,易于理解和扩展,使绘图变得轻松,通过Matplotlib可以很轻松地画一些或简单或复杂的图形,几行代码即可生成直方图、条形图、散点图、密度图等等,最重要的是免费和开源。
pandasPandas 是一个开放源码、BSD 许可的库,提供高性能、易于使用的数据结构和数据分析工具。Pandas 广泛应用在学术、金融、统计学等各个数据分析领域。
需要说明的是它不是“熊猫”,名字衍生自术语 "panel data"(面板数据)和 "Python data analysis"(Python 数据分析)。
优点:是Python的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观的处理关系型、标记型数据。对于数据分析专业人士,它是数据分析及可视化的利器。
seabornSeaborn是基于matplotlib的图形可视化python包。它提供了一种高度交互式界面,便于用户能够做出各种有吸引力的统计图表。
它是基于matplotlib更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn能做出很具有吸引力的图,应该把Seaborn视为matplotlib的补充,而不是替代物,它能高度兼容numpy与pandas数据结构以及scipy与statsmodels等统计模式。
优点:matplotlib高度封装,代码量少,图表漂亮。比起matplotlib具有更美观、更现代的调色板设计等优点。scikit-plot这是一个跟机器学习有效结合的绘图库。
想要深入学习的小伙伴参见其github仓库,这里不再赘述了。
优点:Scikit-Plot是由ReiichiroNakano创建的用在机器学习的可视化工具,能最快速简洁的画出用Matplotlib要写很多行语句才能画出的图。
关键是对于机器学习相关可视化处理,该库有较好的支持。Networkxnetworkx是Python的一个包,用于构建和操作复杂的图结构,提供分析图的算法。
图是由顶点、边和可选的属性构成的数据结构,顶点表示数据,边是由两个顶点唯一确定的,表示两个顶点之间的关系。顶点和边也可以拥有更多的属性,以存储更多的信息。
优点:用于创建、操纵和研究复杂网络的结构、以及学习复杂网络的结构、功能及其动力学。上面是我的回答,希望对您有所帮助!
相关链接: 1、vue怎么用照片做视频,vue可以直接拍照片吗 2、神经网络基础知识与技巧题型,神经网络基本知识 3、神经网络梯度是什么意思,神经网络梯度公式推导 4、node.js适合做什么类项目,nodejs适合做什么项目 5、tapescripts的意思及音标,tapescripts怎么读英语