文章目录
- SnowFlake 雪花算法
- 使用场景
- 代码实现
- 测试
- 测试结果
- 算法优缺点
- 注意事项
SnowFlake 雪花算法
SnowFlake 中文意思为雪花,故称为雪花算法。最早是 Twitter 公司在其内部用于分布式环境下生成唯一 ID。在2014年开源 scala 语言版本。
雪花算法原理就是生成一个的64位比特位的 long 类型的唯一 id。
- 最高1位固定值0,因为生成的 id 是正整数,如果是1就是负数了。
- 接下来41位存储毫秒级时间戳,2^41/(1000606024365)=69,大概可以使用69年。
- 再接下10位存储机器码,包括5位 datacenterId 和5位 workerId。最多可以部署2^10=1024台机器。
- 最后12位存储序列号。同一毫秒时间戳时,通过这个递增的序列号来区分。即对于同一台机器而言,同一毫秒时间戳下,可以生成2^12=4096个不重复 id。
使用场景
随着业务的增长与用户数量的增长,单个服务越来越多,数据库也分得越来越细,有些一个业务分成好几个库,这时候自增主键或者序列之类的主键id生成方式已经不再满足需求,分布式系统中需要的是一个全局唯一的id生成规则
雪花算法可以作为一个单独的服务进行部署,然后需要全局唯一 id 的系统,请求雪花算法服务获取 id 即可。
对于每一个雪花算法服务,需要先指定10位的机器码,这个根据自身业务进行设定即可。例如机房号+机器号,机器号+服务号,或者是其他可区别标识的10位比特位的整数值都行。
代码实现
public class SnowFlakeGenerateIdWorker {
/**
* 开始时间截
*/
private final long twepoch = 1420041600000L;
/**
* 机器id所占的位数
*/
private final long workerIdBits = 5L;
/**
* 数据标识id所占的位数
*/
private final long datacenterIdBits = 5L;
/**
* 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数)
*/
private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
/**
* 支持的最大数据标识id,结果是31
*/
private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
/**
* 序列在id中占的位数
*/
private final long sequenceBits = 12L;
/**
* 机器ID向左移12位
*/
private final long workerIdShift = sequenceBits;
/**
* 数据标识id向左移17位(12+5)
*/
private final long datacenterIdShift = sequenceBits + workerIdBits;
/**
* 时间截向左移22位(5+5+12)
*/
private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
/**
* 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095)
*/
private final long sequenceMask = -1L ^ (-1L << sequenceBits);
/**
* 工作机器ID(0~31)
*/
private long workerId;
/**
* 数据中心ID(0~31)
*/
private long datacenterId;
/**
* 毫秒内序列(0~4095)
*/
private long sequence = 0L;
/**
* 上次生成ID的时间截
*/
private long lastTimestamp = -1L;
/**
* 构造函数
*
* @param workerId 工作ID (0~31)
* @param datacenterId 数据中心ID (0~31)
*/
public SnowFlakeGenerateIdWorker(long workerId, long datacenterId) {
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
this.workerId = workerId;
this.datacenterId = datacenterId;
}
/**
* 获得下一个ID (该方法是线程安全的)
*
* @return long
*/
public synchronized long nextId() {
long timestamp = timeGen();
timestamp = generateId(timestamp);
return ((timestamp - twepoch) << timestampLeftShift) //
| (datacenterId << datacenterIdShift) //
| (workerId << workerIdShift) //
| sequence;
}
private long generateId(long timestamp){
//如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
if(timestamp < lastTimestamp){
throw new RuntimeException(
String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
}
//如果是同一时间生成的,则进行毫秒内序列
if(lastTimestamp == timestamp)
{
sequence = (sequence + 1) & sequenceMask;
//毫秒内序列溢出
if(sequence == 0)
//阻塞到下一个毫秒,获得新的时间戳
timestamp = tilNextMillis(lastTimestamp);
}
else//时间戳改变,毫秒内序列重置
{
sequence = 0L;
}
//上次生成ID的时间截
lastTimestamp = timestamp;
return timestamp;
}
/**
*获得下一个ID (string)
**/
public synchronized String generateNextId() {
long timestamp = timeGen();
timestamp = generateId(timestamp);
//移位并通过或运算拼到一起组成64位的ID
return String.valueOf(((timestamp - twepoch) << timestampLeftShift)
| (datacenterId << datacenterIdShift)
| (workerId << workerIdShift)
| sequence);
}
/**
* 阻塞到下一个毫秒,直到获得新的时间戳
*
* @param lastTimestamp 上次生成ID的时间截
* @return 当前时间戳
*/
protected long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}
/**
* 返回以毫秒为单位的当前时间
*
* @return 当前时间(毫秒)
*/
protected long timeGen() {
return System.currentTimeMillis();
}
}
测试
public class Test {
public static void main(String[] args) {
SnowFlakeGenerateIdWorker snowFlakeGenerateIdWorker =
new SnowFlakeGenerateIdWorker(0L, 0L);
//String类型id
String s = snowFlakeGenerateIdWorker.generateNextId();
System.out.println(s);
//long类型id
long l = snowFlakeGenerateIdWorker.nextId();
System.out.println(l);
// 验证生成1000万个id需要多久
long startTime = System.currentTimeMillis();
// 生成1000万个id,塞入set,测试是否有重复id
Set<Long> set = new TreeSet<>();
for (int i = 0; i < 10000000; i++) {
set.add(snowFlakeGenerateIdWorker.nextId());
}
System.out.println(set.size());
System.out.println("耗时"+(System.currentTimeMillis() - startTime)+"毫秒");
}
}
测试结果
1038099756036915200
1038099756036915201
10000000
耗时3080毫秒
算法优缺点
雪花算法有以下几个优点:
- 高并发分布式环境下生成不重复 id,每秒可生成百万个不重复 id。
- 基于时间戳,以及同一时间戳下序列号自增,基本保证 id 有序递增。
- 不依赖第三方库或者中间件。
- 算法简单,在内存中进行,效率高。
雪花算法有如下缺点:
- 依赖服务器时间,服务器时钟回拨时可能会生成重复 id。算法中可通过记录最后一个生成 id 时的时间戳来解决,每次生成 id 之前比较当前服务器时钟是否被回拨,避免生成重复 id。
注意事项
其实雪花算法每一部分占用的比特位数量并不是固定死的。例如你的业务可能达不到69年之久,那么可用减少时间戳占用的位数,雪花算法服务需要部署的节点超过1024台,那么可将减少的位数补充给机器码用。
注意,雪花算法中41位比特位不是直接用来存储当前服务器毫秒时间戳的,而是需要当前服务器时间戳减去某一个初始时间戳值,一般可以使用服务上线时间作为初始时间戳值。
对于机器码,可根据自身情况做调整,例如机房号,服务器号,业务号,机器 IP 等都是可使用的。对于部署的不同雪花算法服务中,最后计算出来的机器码能区分开来即可。