本人以前主要focus在传统音频的软件开发,接触到的算法主要是音频信号处理相关的,如各种编解码算法和回声消除算法等。最近切到语音识别上,接触到的算法就变成了各种机器学习算法,如GMM等。K-means作为其中比较简单的一种肯定是要好好掌握的。今天就讲讲K-means的基本原理和代码实现。其中基本原理简述(主要是因为:1,K-means比较简单;2,网上有很多讲K-means基本原理的),重点放在代码实现上。

 

1, K-means基本原理

K均值(K-means)聚类算法是无监督聚类(聚类(clustering)是将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个“簇(cluster)”)算法中的一种,也是最常用的聚类算法。K表示类别数,Means表示均值。K-means主要思想是在给定K值和若干样本(点)的情况下,把每个样本(点)分到离其最近的类簇中心点所代表的类簇中,所有点分配完毕之后,根据一个类簇内的所有点重新计算该类簇的中心点(取平均值),然后再迭代的进行分配点和更新类簇中心点的步骤,直至类簇中心点的变化很小,或者达到指定的迭代次数。

 

 K-means算法流程如下:

(a)随机选取K个初始cluster center

(b)分别计算所有样本到这K个cluster center的距离

(c)如果样本离cluster center Ci最近,那么这个样本属于Ci点簇;如果到多个cluster center的距离相等,则可划分到任意簇中

(d)按距离对所有样本分完簇之后,计算每个簇的均值(最简单的方法就是求样本每个维度的平均值),作为新的cluster center

(e)重复(b)(c)(d)直到新的cluster center和上轮cluster center变化很小或者达到指定的迭代次数,算法结束

 

2, 算法实现

我主要偏底层开发,最熟悉语言是C,所以代码是用C语言来实现的。在二维平面上有一些点,大意如下图,

KEAMS聚类算法原理介绍 k-means聚类算法实现_类簇

用K-means算法对其分类,其中类的个数(即K值)和点的个数人为指定。具体的代码如下:

#include<stdio.h>
 #include<stdlib.h>
 #include<string.h>
 #include<math.h>

 #define MAX_ROUNDS 100    //最大允许的聚类次数

 //“点”的结构体  
 typedef struct Point{
   int x_value;           //用于存放点在X轴上的值
   int y_value;           //用于存放点在Y轴上的值
   int cluster_id;        //用于存放该点所属的cluster id
 }Point;
 Point* data;
  
 //cluster center的结构体
 typedef struct ClusterCenter{
   double x_value;
   double y_value;
   int cluster_id;
 }ClusterCenter;
 ClusterCenter* cluster_center;

 //计算cluster center的结构体
 typedef struct CenterCalc{
   double x_value;
   double y_value;
 }CenterCalc;
 CenterCalc *center_calc;
  
 int is_continue;                               //kmeans 运算是否继续
 int* cluster_center_init_index;        //记录每个cluster center最初用的是哪个“点”
 double* distance_from_center;      //记录一个“点”到所有cluster center的距离
 int* data_size_per_cluster;            //每个cluster点的个数
 int data_size_total;                        //设定点的个数
 char filename[200];                       //要读取的点的数据的文件名
 int cluster_count;                          //设定的cluster的个数
  
 void memoryAlloc();
 void memoryFree();
 void readDataFromFile();
 void initialCluster();
 void calcDistance2OneCenter(int pointID, int centerID);
 void calcDistance2AllCenters(int pointID);
 void partition4OnePoint(int pointID);
 void partition4AllPointOneCluster();
 void calcClusterCenter();
 void kmeans();
 void compareNewOldClusterCenter(CenterCalc* center_calc);
  
 int main(int argc, char* argv[])
 {
     if( argc != 4 )
     {
         printf("This application needs 3 parameters to run:"
             "\n the 1st is the size of data set,"
             "\n the 2nd is the file name that contains data"
             "\n the 3rd indicates the cluster_count"
             "\n");
         exit(1);
     }

     data_size_total = atoi(argv[1]);
     strcat(filename, argv[2]);
     cluster_count = atoi(argv[3]);
     //1, memory alloc
     memoryAlloc();
     //2, read point data from file
     readDataFromFile();
     //3, initial cluster
     initialCluster();
     //4, run k-means
     kmeans();
     //5, memory free & end
     memoryFree();
     
     return 0;
 }

 void memoryAlloc()
 {
   data = (Point*)malloc(sizeof(struct Point) * (data_size_total));
   if( !data )
   {
     printf("malloc error:data!");
     exit(1);
   }
   cluster_center_init_index = (int*)malloc(sizeof(int) * (cluster_count));
   if( !cluster_center_init_index )
   {
     printf("malloc error:cluster_center!\n");
     exit(1);
   }
   distance_from_center = (double*)malloc(sizeof(double) * (cluster_count));
   if( !distance_from_center )
   {
     printf("malloc error: distance_from_center!\n");
     exit(1);
   }
   cluster_center = (ClusterCenter*)malloc(sizeof(struct ClusterCenter) * (cluster_count));
   if( !cluster_center )
   {
     printf("malloc cluster center new error!\n");
     exit(1);
   }

   center_calc = (CenterCalc*)malloc(sizeof(CenterCalc) * cluster_count);
   if( !center_calc )
   {
     printf("malloc error: center_calc!\n");
     exit(1);
   }

   data_size_per_cluster = (int*)malloc(sizeof(int) * (cluster_count));
   if( !data_size_per_cluster )
   {
     printf("malloc error: data_size_per_cluster\n");
     exit(1);
   }
  
 }

 void memoryFree()
 {
   free(data);
   data = NULL;
   free(cluster_center_init_index);
   cluster_center_init_index = NULL;
   free(distance_from_center);
   distance_from_center = NULL;
   free(cluster_center);
   cluster_center = NULL;
   free(center_calc);
   center_calc = NULL;
   free(data_size_per_cluster);
   data_size_per_cluster = NULL;
 }

 //从文件中读入每个点的x和y值
 void readDataFromFile()
 {
   int i;
   FILE* fread;
  
   if( NULL == (fread = fopen(filename, "r")))
   {
     printf("open file(%s) error!\n", filename);
     exit(1);
   }

   for( i = 0; i < data_size_total; i++ )
   {
     if( 2 != fscanf(fread, "%d %d ", &data[i].x_value, &data[i].y_value))
     {
       printf("fscanf error: %d\n", i);
     }
     data[i].cluster_id = -1;    //初始时每个点所属的cluster id均置为-1

     printf("After reading, point index:%d, X:%d, Y:%d, cluster_id:%d\n", i, data[i].x_value, data[i].y_value, data[i].cluster_id);
   }
 }
  

 //根据传入的cluster_count来随机的选择一个点作为 一个cluster的center  
 void initialCluster()
 {
   int i,j;
   int random;
     
   //产生初始化的cluster_count个聚类  
   for( i = 0; i < cluster_count; i++ )
   {
     cluster_center_init_index[i] = -1;
   }
   //随机选择一个点作为每个cluster的center(不重复)
   for( i = 0; i < cluster_count; i++ )
   {
     Reselect:
         random = rand() % (data_size_total - 1);
         for(j = 0; j < i; j++) {
             if(random == cluster_center_init_index[j])
                 goto Reselect;
         }

     cluster_center_init_index[i] = random;
     printf("cluster_id: %d, located in point index:%d\n", i, random);  
   }
   //将随机选择的点作为center,同时这个点的cluster id也就确定了
   for( i = 0; i < cluster_count; i++ )
   {
     cluster_center[i].x_value = data[cluster_center_init_index[i]].x_value;
     cluster_center[i].y_value = data[cluster_center_init_index[i]].y_value;
     cluster_center[i].cluster_id = i;
     data[cluster_center_init_index[i]].cluster_id = i;

     printf("cluster_id:%d, index:%d, x_value:%f, y_value:%f\n", cluster_center[i].cluster_id, cluster_center_init_index[i], cluster_center[i].x_value, cluster_center[i].y_value);
   }
 }
  

 //计算一个点到一个cluster center的distance
 void calcDistance2OneCenter(int point_id,int center_id)
 {
   distance_from_center[center_id] = sqrt( (data[point_id].x_value-cluster_center[center_id].x_value)*(double)(data[point_id].x_value-cluster_center[center_id].x_value) + (double)(data[point_id].y_value-cluster_center[center_id].y_value) *              (data[point_id].y_value-cluster_center[center_id].y_value) );
 }
  
 //计算一个点到每个cluster center的distance
 void calcDistance2AllCenters(int point_id)
 {
   int i;
   for( i = 0; i < cluster_count; i++ )
   {
     calcDistance2OneCenter(point_id, i);
   }
 }
  
 //确定一个点属于哪一个cluster center(取距离最小的)
 void partition4OnePoint(int point_id)
 {
   int i;
   int min_index = 0;
   double min_value = distance_from_center[0];
   for( i = 0; i < cluster_count; i++ )
   {
     if( distance_from_center[i] < min_value )
     {
       min_value = distance_from_center[i];
       min_index = i;
     }
   }
  
   data[point_id].cluster_id = cluster_center[min_index].cluster_id;
 }

 //在一轮的聚类中得到所有的point所属于的cluster center
 void partition4AllPointOneCluster()
 {
   int i;
   for( i = 0; i < data_size_total; i++ )
   {
     if( data[i].cluster_id != -1 )  //这个点就是center,不需要计算
       continue;
     else
     {
       calcDistance2AllCenters(i);  //计算第i个点到所有center的distance
       partition4OnePoint(i);          //根据distance对第i个点进行partition
     }
   }
 }

 //重新计算新的cluster center
 void calcClusterCenter()
 {
   int i;

   memset(center_calc, 0, sizeof(CenterCalc) * cluster_count);
   memset(data_size_per_cluster, 0, sizeof(int) * cluster_count);
   //分别对每个cluster内的每个点的X和Y求和,并计每个cluster内点的个数
   for( i = 0; i < data_size_total; i++ )
   {
     center_calc[data[i].cluster_id].x_value += data[i].x_value;
     center_calc[data[i].cluster_id].y_value += data[i].y_value;
     data_size_per_cluster[data[i].cluster_id]++;
   }
   //计算每个cluster内点的X和Y的均值作为center
   for( i = 0; i < cluster_count; i++ )
   {
      if(data_size_per_cluster[i] != 0) {
         center_calc[i].x_value = center_calc[i].x_value/ (double)(data_size_per_cluster[i]);
         center_calc[i].y_value = center_calc[i].y_value/ (double)(data_size_per_cluster[i]);        printf(" cluster %d point cnt:%d\n", i, data_size_per_cluster[i]);
         printf(" cluster %d center: X:%f, Y:%f\n", i, center_calc[i].x_value, center_calc[i].y_value);
     }
     else
           printf(" cluster %d count is zero\n", i);
   }
  
   //比较新的和旧的cluster center值的差别。如果是相等的,则停止K-means算法。
   compareNewOldClusterCenter(center_calc);
  
   //将新的cluster center的值放入cluster_center结构体中
   for( i = 0; i < cluster_count; i++ )
   {
     cluster_center[i].x_value = center_calc[i].x_value;
     cluster_center[i].y_value = center_calc[i].y_value;
     cluster_center[i].cluster_id = i;
   }

   //在重新计算了新的cluster center之后,要重新来为每一个Point进行聚类,所以data中用于表示聚类ID的cluster_id要都重新置为-1。
   for( i = 0; i < data_size_total; i++ )
   {
     data[i].cluster_id = -1;
   }
 }
  
 //比较新旧的cluster center的值,完全一样表示聚类完成
 void compareNewOldClusterCenter(CenterCalc* center_calc)
 {
   int i;
   is_continue = 0;       //等于0表示不要继续,1表示要继续
   for( i = 0; i < cluster_count; i++ )
   {
     if( center_calc[i].x_value != cluster_center[i].x_value || center_calc[i].y_value != cluster_center[i].y_value)
     {
       is_continue = 1;
       break;
     }
   }
 }
  
 //K-means算法
 void kmeans()
 {
   int rounds;
   for( rounds = 0; rounds < MAX_ROUNDS; rounds++ )
   {
     printf("\nRounds : %d             \n", rounds+1);
     partition4AllPointOneCluster();
     calcClusterCenter();
     if( 0 == is_continue )
     {
        printf("\n after %d rounds, the classification is ok and can stop.\n", rounds+1);
        break;  
     }
   }
 }


 

编译后生成可执行文件kmeans,输入的文件里共有6个点,分别为(0, 0), (4, 4), (4, 5), (0, 1), (3, 6) ,(4, 9),要求分成两类。运行可执行程序后得到结果如下:

$ ./kmeans 6 data 2
 After reading, point index:0, X:0, Y:0, cluster_id:-1
 After reading, point index:1, X:4, Y:4, cluster_id:-1
 After reading, point index:2, X:4, Y:5, cluster_id:-1
 After reading, point index:3, X:0, Y:1, cluster_id:-1
 After reading, point index:4, X:3, Y:6, cluster_id:-1
 After reading, point index:5, X:4, Y:9, cluster_id:-1 cluster_id: 0, located in point index:3
 cluster_id: 1, located in point index:1
 cluster_id:0, index:3, x_value:0.000000, y_value:1.000000
 cluster_id:1, index:1, x_value:4.000000, y_value:4.000000

 Rounds : 1             
  cluster 0 point cnt:2
  cluster 0 center: X:0.000000, Y:0.500000
  cluster 1 point cnt:4
  cluster 1 center: X:3.750000, Y:6.000000

 Rounds : 2             
  cluster 0 point cnt:2
  cluster 0 center: X:0.000000, Y:0.500000
  cluster 1 point cnt:4
  cluster 1 center: X:3.750000, Y:6.000000

  after 2 rounds, the classification is ok and can stop.

即两轮后聚类就好了,(0, 0),(0, 1)一类,(4, 4), (4, 5), (3, 6) ,(4, 9)一类。