序言

这个是我在做FPGA界的HelloWorld——数字钟设计时随手写下的,再现了数字钟设计的过程

目标分析

  1. 时钟具有时分秒的显示,需6个数码管。为了减小功耗采用扫描法显示
  2. 按键设置时间,需要对按键进行消抖
  3. 时分秒即为2个60进制计数器,一个24进制计数器。

模块设计

综上所述,我采用模块化设计方法进行设计,绘制框图如下。

  1. 时钟分频产生各个模块所需频率时钟。
  2. 按键处理模块对按键信号进行消抖、变长脉冲为短脉冲等处理。
  3. 时间控制模块产生时间信号或对时间进行设置。
  4. 数码管驱动模块负责对时间信号BCD码译码为数码管的段码并且扫描输出到数码管。
    下面对各个模块分别详细叙述

时钟分频模块

我打算把时钟分频模块做成“数控N分频器”,通过给分频器传入数值N来对时钟信号进行N分频。得到的信号频率为原时钟信号的频率/N,占空比为1/N。
稍微考虑下其他模块所需时钟:按键处理模块100Hz ,时间控制模块1Hz,数码管驱动50Hz。而输入时钟为33.8688MHz。
我不想传入的N数值过大,我打算先对时钟进行两次:第一次调用时钟分频模块得到1Mhz,第二次得到1Khz。这样N的位数为10可以满足需求。
代码如下

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity ClkDiv is
	port(
	clk_i:IN STD_LOGIC;
	N_i:  IN STD_LOGIC_VECTOR(9 DOWNTO 0);
	clk_o:OUT STD_LOGIC);
end ClkDiv;

architecture behavior of ClkDiv is
signal count:STD_LOGIC_VECTOR(9 DOWNTO 0):="0000000001";
signal clk_temp:STD_LOGIC:='0';
begin
	process(clk_i)
	begin
		if(clk_i'EVENT and clk_i='1')then  
			if (count=N_i)then
				count<="0000000001";
				clk_temp<='1';
			else
				count<=count+1;
				clk_temp<='0';
			end if;
		end if;
	end process;	
	clk_o<=clk_temp;
end behavior;

仿真结果如下:

2分频:输出信号为f/2Hz,占空比1:2

数字时钟 android 实现 数字时钟程序设计_控制模块


3分频:输出信号为f/3Hz,占空比1:3

数字时钟 android 实现 数字时钟程序设计_数码管_02

按键处理模块

去抖动根据以往的经验,按键按下弹起电平会有一小段毛刺,可能会引起电路误操作,所以要对按键进行消抖处理使变为干净的矩形信号。

数字时钟 android 实现 数字时钟程序设计_控制模块_03


数字时钟 android 实现 数字时钟程序设计_控制模块_04


数字时钟 android 实现 数字时钟程序设计_数字时钟 android 实现_05

抖动时间一般为10ms,若采样时间为10ms则噪声最多采样到一次。
对于两级D触发器,Q1和Q2之间有一个时间延迟效果。每一次时钟上升沿就是对信号采样一次,Q1保存的是最新一次的采样Q2保存的是上一次的采样,Q1和Q2之间有一个时间延迟,时间为时钟周期。

对于噪声信号只能采样到一次,Q1*Q2的值一定为0。

对于持续时间大于时钟周期的信号可以采样到两次,Q1的值和Q2的值相同,Q1*Q2为信号电平。这就是去抖原理。

数字时钟 android 实现 数字时钟程序设计_进制_06


数字时钟 android 实现 数字时钟程序设计_控制模块_07


代码如下

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity JitterElimination is	
	port(
	key: IN STD_LOGIC;
	clk_i:IN STD_LOGIC;
	DLY_OUT:OUT STD_LOGIC);
	
end JitterElimination;

architecture rtl of JitterElimination is
signal D1,D2,S:STD_LOGIC;
begin
	process(clk_i)
	begin
		if (clk_i'EVENT and clk_i='1')then
			D1<=key;
			D2<=D1;
		end if;
	end process;	
	S<=D1 and D2;	
	DLY_OUT<=S;
	
end rtl;

仿真结果如下

数字时钟 android 实现 数字时钟程序设计_数字时钟 android 实现_08


可以看到,按键的抖动被消除了,但是可以看到按键按下电平持续时间跨过几个时钟周期。如果有必要可以使用微分电路把矩形波转换为窄脉冲波,这里不需要。

数码管驱动模块

时分秒显示需要2+2+2=6个数码管,每个数码管的显示需要8根引脚。使用扫描方式显示,只需要6+8=14根引脚,功耗比较低。
输入:时间信号BCD码有4*6=24位,用于控制扫描频率的时钟信号是1个输入信号

输出:位选信号6位,段码8位

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity LEDScan is 
	port(
		CurTime_i:  IN STD_LOGIC_VECTOR(23 DOWNTO 0); 
		clk_i:IN STD_LOGIC;
		Position_o:OUT STD_LOGIC_VECTOR(5 DOWNTO 0);
		Section_o: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
	function convert(BCD:STD_LOGIC_VECTOR(3 DOWNTO 0)) return STD_LOGIC_VECTOR is
		variable Section: STD_LOGIC_VECTOR(7 DOWNTO 0);		
	begin
		Case BCD is
			when "0000" =>Section:="00111111"; --段码表————————————---------------------------------------------
			when "0001" =>Section:="00000110"; --0x3f,0x06,0x5b,0x4f,0x66,												
			when "0010" =>Section:="01011011"; --0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71
			when "0011" =>Section:="01001111";
			when "0100" =>Section:="01100110"; 
			
			when "0101" =>Section:="01101101";
			when "0110" =>Section:="01111101";
			when "0111" =>Section:="00000111";
			when "1000" =>Section:="01111111"; 
			when "1001"	=>Section:="01101111";
			when OTHERS =>Section:="01100110";--01110001 	 
			
--			when "0000" =>Section:="11000000"; --段码表{0x88,0x83,0xc6,0xa1,0x86,0x8e}----------------
--			when "0001" =>Section:="11111001"; --0xc0,0xf9,0xa4,0xb0,0x99,												
--			when "0010" =>Section:="10100100"; --0x92,0x82,0xf8, 0x80,0x90,
--			when "0011" =>Section:="10110000";
--			when "0100" =>Section:="10011001"; 
--			
--			when "0101" =>Section:="10010010";
--			when "0110" =>Section:="10000010";
--			when "0111" =>Section:="11111000";
--			when "1000" =>Section:="10000000"; 
--			when "1001"	=>Section:="10010000";
--			when OTHERS =>Section:="10001110"; 			
		end case;
		return Section;
	end convert;
end LEDScan;



architecture behaviour of LEDScan is 
	signal CurTimeTemp:STD_LOGIC_VECTOR(23 DOWNTO 0):="000000000000000000000000";
	signal SectionTemp,Section0,Section1,Section2,Section3,Section4,Section5:  STD_LOGIC_VECTOR(7 DOWNTO 0):="00111111";--此处应为0的段码,数码管共阴数码管-----------------------------------------------------------------------		
	signal Position	:integer :=5;
begin 

	process(clk_i) 
	begin
		if (clk_i'EVENT and clk_i='1') then	
			
			CurTimeTemp<=CurTime_i;
			Section0<=convert(CurTimeTemp(3 DOWNTO 0));
			Section1<=convert(CurTimeTemp(7 DOWNTO 4));
			Section2<=convert(CurTimeTemp(11 DOWNTO 8));  
			Section3<=convert(CurTimeTemp(15 DOWNTO 12));
			Section4<=convert(CurTimeTemp(19 DOWNTO 16));
			Section5<=convert(CurTimeTemp(23 DOWNTO 20));			
			
			if (Position=5)then
				Position<=0;
			else
				Position<=Position+1;
			end if;	 
			
			case Position is 
				when 0 =>Section_o<=Section0;Position_o<="000001";
				when 1 =>Section_o<=Section1;Position_o<="000010";
				when 2 =>Section_o<='1'&Section2(6 downto 0);Position_o<="000100"; --添加小数点
				when 3 =>Section_o<=Section3;Position_o<="001000";		
				when 4 =>Section_o<='1'&Section4(6 downto 0);Position_o<="010000";
				when 5 =>Section_o<=Section5;Position_o<="100000";
				when OTHERS=>NULL;
			end case;
		end if;	
	end process;
	
	

end behaviour;

仿真结果如下图所示

数字时钟 android 实现 数字时钟程序设计_控制模块_09


我们可以看到在当前时间为23:59:59的情况下Section5里面放的是2的段码,Section4里面放的是3的段码,Section3里面放的是5的段码

在时钟的作用下,Position_o依次选中个位,Section_o输出的是选中位置的段码。

时间控制模块

我想用两个按键分别设置分钟,时钟数值。分钟增1的条件是按键按下或者秒计数器进位,时钟增1的条件是按键2按下或者分钟计数器进位。这样可以在不破坏正常运行状态的情况下,用按键对分、时进行加1操作(设置),满足了功能又没有增加设计的复杂度。
最后将计数器的值翻译为BCD码,连接到一起形成24位BCD码。

输入:按键1和按键2、1Hz时间脉冲
输出:24位BCD码

N进制计数器

library IEEE;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;

entity Counter is	  
	port(
	CountClk:in STD_LOGIC; 
	N: in STD_LOGIC_VECTOR(4 downto 0); 
	count:out STD_LOGIC_VECTOR(4 downto 0);
	Cout:out STD_LOGIC);
end Counter;


architecture behav of Counter is	 
signal count_temp: STD_LOGIC_VECTOR(4 downto 0):="00000"; 
signal CoutTemp:STD_LOGIC:='0';
begin		 
	process(CountClk) 
	begin	
		if (CountClk'EVENT and CountClk='1')then
			count_temp<=count_temp+1;
			CoutTemp<='0';
			if (count_temp>=N)then
				count_temp<="00000";	
				CoutTemp<='1';
			end if;
		end if;
	end process;
	Cout<=CoutTemp;
	count<=count_temp;
end behav;

控制模块

library IEEE;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;


entity Contrl is 
		port(
			MinKey_i:IN STD_LOGIC;
			HourKey_i:IN STD_LOGIC;
			clk_i:IN STD_LOGIC;
			CurrentTimeBCD_o: OUT STD_LOGIC_VECTOR(23 downto 0));
end Contrl;

architecture behavior of Contrl is
	signal h: integer range 0 to 23 := 0;	-- 秒钟个位
	signal m: integer range 0 to 59 := 0;	-- 秒钟个位
	signal s: integer range 0 to 59 := 0;	-- 秒钟个位
	signal s1: integer range 0 to 9 := 0;	-- 秒钟个位
	signal s2: integer range 0 to 5 := 0;	-- 秒钟百位
	signal m1: integer range 0 to 9 := 0;	-- 分钟个位
	signal m2: integer range 0 to 5 := 0;	-- 分钟百位
	signal h1: integer range 0 to 9 := 0;	-- 时钟个位
	signal h2: integer range 0 to 2 := 0;	-- 时钟百位	
	signal CurrentTimeBCD :  STD_LOGIC_VECTOR(23 downto 0):="000000000000000000000000";	
	constant N9:STD_LOGIC_VECTOR(4 downto 0):="01001"; 
	constant N5:STD_LOGIC_VECTOR(4 downto 0):="00101"; 
	constant N1:STD_LOGIC_VECTOR(4 downto 0):="00001";
	constant N23:STD_LOGIC_VECTOR(4 downto 0):="10111";
	signal CountS1:STD_LOGIC_VECTOR(4 downto 0):="00000";  
	signal CountS2:STD_LOGIC_VECTOR(4 downto 0):="00000"; 
	signal CountH:STD_LOGIC_VECTOR(4 downto 0):="00000";
	signal CountM1:STD_LOGIC_VECTOR(4 downto 0):="00000";
	signal CountM2:STD_LOGIC_VECTOR(4 downto 0):="00000";
	signal CountH1:STD_LOGIC_VECTOR(4 downto 0):="00000";
	signal CountH2:STD_LOGIC_VECTOR(4 downto 0):="00000";
	
	
	signal KeyMTemp:STD_LOGIC:='1';
	signal KeyHTemp:STD_LOGIC:='1';
	
	signal CoutS1:STD_LOGIC:='0'; 
	signal CoutS2:STD_LOGIC:='0';  
	signal CoutM1:STD_LOGIC:='0'; 
	signal CoutM2:STD_LOGIC:='0';
	
	signal CoutH:STD_LOGIC:='0'; 
	signal CoutH1:STD_LOGIC:='0'; 
	signal CoutH2:STD_LOGIC:='0';
	component Counter is 
		port(
			CountClk:in STD_LOGIC; 
			N: in STD_LOGIC_VECTOR(4 downto 0); 
			count:out STD_LOGIC_VECTOR(4 downto 0);
			Cout:out STD_LOGIC);
	end component; 	
	
	
begin
	KeyMTemp<=CoutS2 xor (not MinKey_i);
	KeyHTemp<=CoutM2 xor (not HourKey_i);
	
	S1_Map: Counter port map(
	CountClk=> clk_i,
	N=>N9,
	count=>CountS1,
	cout=>CoutS1);	
	
	S2_Map: Counter port map(
	CountClk=> CoutS1,
	N=>N5,
	count=>CountS2,
	cout=>CoutS2);

	M1_Map: Counter port map(
	CountClk=>KeyMTemp ,
	N=>N9,
	count=>CountM1,
	cout=>CoutM1);	
	
	M2_Map: Counter port map(
	CountClk=> CoutM1,
	N=>N5,
	count=>CountM2,
	cout=>CoutM2);
	
	
	H1_Map: Counter port map(
	CountClk=> KeyHTemp,
	N=>N23,
	count=>CountH,
	cout=>CoutH);	
	process(CountH)
	begin
	case CountH is 
				when "00000" =>CountH2<="00000";CountH1<="00000";
				when "00001" =>CountH2<="00000";CountH1<="00001";
				when "00010" =>CountH2<="00000";CountH1<="00010";
				when "00011" =>CountH2<="00000";CountH1<="00011";
				when "00100"=>CountH2<="00000";CountH1<="00100";
				when "00101" =>CountH2<="00000";CountH1<="00101";
				when "00110" =>CountH2<="00000";CountH1<="00110";
				when "00111" =>CountH2<="00000";CountH1<="00111";
				when "01000" =>CountH2<="00000";CountH1<="01000";
				when "01001" =>CountH2<="00000";CountH1<="01001";
				
				when  "01010"=>CountH2<="00001";CountH1<="00000";			
				when "01011" =>CountH2<="00001";CountH1<="00001";
				when "01100" =>CountH2<="00001";CountH1<="00010";
				when "01101" =>CountH2<="00001";CountH1<="00011";
				when "01110" =>CountH2<="00001";CountH1<="00100";
				when "01111" =>CountH2<="00001";CountH1<="00101";
				when "10000" =>CountH2<="00001";CountH1<="00110";
				when "10001" =>CountH2<="00001";CountH1<="00111";
				when "10010" =>CountH2<="00001";CountH1<="01000";
				when "10011" =>CountH2<="00001";CountH1<="01001";
				
				when "10100" =>CountH2<="00010";CountH1<="00000";
				
				when "10101" =>CountH2<="00010";CountH1<="00001";
				when "10110" =>CountH2<="00010";CountH1<="00010";
				when "10111" =>CountH2<="00010";CountH1<="00011";
				when OTHERS=>NULL;
	end case;
	
	
	

	
	

	
	--	process(HourKey_i)
	--	begin	
	--		if (HourKey_i'EVENT and HourKey_i='1') then
	--			if h<23 then
	--					h<=h+1;
	--			else 
	--					h<=0; 
	--			end if;
	--		end if;
	--	end process;
	--	
	--	process(MinKey_i)
	--	begin	
	--	if (MinKey_i'EVENT and MinKey_i='1') then
	--			if  m<59 then
	--				m<=m+1;
	--			else
	--				m<=0;	
	--			end if;
	--		end if;
	--	end process;	
	
	
	
	--					if s1<9 then
	--						s1<=s1+1;
	--					else
	--						s1<=0;
	--						if s2<5 then 
	--							s2<=s2+1;
	--						else
	--							s2<=0;
	--							if m1<9 then
	--								m1<=m1+1;
	--							else
	--								m1<=0;
	--								if m2<5 then
	--									m2<=m2+1;
	--								else
	--									m2<=0;
	--									if h2<2 then
	--										if h1<9 then
	--											h1<=h1+1;
	--										else 
	--											h1<=0;
	--											h2<=h2+1;---可以断定这里加一
	--										end if;
	--									elsif h2>1 then
	--										if h1<3 then
	--											h1<=h1+1;
	--										else 
	--											h1<=0;
	--											h2<=0;
	--										end if;
	--									end if;		
	--								end if;
	--							end if;
	--						end if;			
	--					end if;
	--				end if ; 
	--				
	--				if (MinKey_i'EVENT and MinKey_i='1') then ------可能要根据按键高电平有效还是低电平有效修改  假设按下接到地
	--					if 	m1<=9 then
	--						m1<=m1+1;
	--					else
	--						m1<=0; 
	--						if m2<=5 then 
	--							m2<=m2+1;
	--						else 
	--							m2<=0;	
	--						end if;
	--					end if;
	--				end if;
	--				if (HourKey_i'EVENT and HourKey_i='1') then  ------可能要根据按键高电平有效还是低电平有效修改
	--					if h2<2 then
	--						if h1<9 then
	--							h1<=h1+1;
	--						else 
	--							h1<=0;
	--							h2<=h2+1;---可以断定这里加一
	--						end if;
	--					elsif h2>1 then
	--						if h1<3 then
	--							h1<=h1+1;
	--						else 
	--							h1<=0;
	--							h2<=0;
	--						end if;
	--					end if;
	--				end if;	 
	--		
	--	
	
	--
	--		
	--		IF(clk_i'EVENT and clk_i='1')then 
	--		if (HourKey_i='0') then
	--				if h<23 then
	--						h<=h+1;
	--				else 
	--						h<=0; 
	--				end if;
	--			end if;
	--			
	--		if ( MinKey_i='0') then
	--			if  m<59 then
	--				m<=m+1;
	--			else
	--				m<=0;	
	--			end if;
	--		end if;
	--		
	--				if s<59 then
	--					s<=s+1;
	--				else
	--					s<=0;
	--					if m<59 then
	--						m<=m+1;
	--					else
	--						m<=0;
	--						if h<23 then
	--							h<=h+1;
	--						else 
	--							h<=0; 
	--						end if;
	--					end if;
	--				end if;
	--			
	--	
	--		
	--		end if;	
	--
	--			
	--		
	
	--		
	--
	--		
	--		h1<=h mod 10;
	--		h2<=(h - h1)/10;
	--		
	--		m1<=m mod 10;
	--		m2<=(m - m1)/10;
	--		
	--		s1<=s mod 10;
	--		s2<=(s - s1)/10;
	--		
	--	
	--		
	
	s1<=CONV_INTEGER(CountS1); 
	s2<=CONV_INTEGER(CountS2);
	m1<=CONV_INTEGER(CountM1);
	m2<=CONV_INTEGER(CountM2);
	h1<=CONV_INTEGER(CountH1);
	h2<=CONV_INTEGER(CountH2);
	CurrentTimeBCD(3 downto 0) <= std_logic_vector(to_unsigned(s1, 4));
	CurrentTimeBCD(7 downto 4) <= std_logic_vector(to_unsigned(s2, 4));
	
	CurrentTimeBCD(11 downto 8) <= std_logic_vector(to_unsigned(m1, 4));
	CurrentTimeBCD(15 downto 12) <= std_logic_vector(to_unsigned(m2, 4));
	
	CurrentTimeBCD(19 downto 16) <= std_logic_vector(to_unsigned(h1, 4));
	CurrentTimeBCD(23 downto 20) <= std_logic_vector(to_unsigned(h2, 4));		
	end process;
	
	
	
	CurrentTimeBCD_o<=CurrentTimeBCD;
end behavior;

仿真结果如下

小时

数字时钟 android 实现 数字时钟程序设计_控制模块_10


分钟

数字时钟 android 实现 数字时钟程序设计_控制模块_11


秒钟

数字时钟 android 实现 数字时钟程序设计_数字时钟 android 实现_12


下图中输出CurrentTimeBCD_o旁边的数值105238表示带有时间信息的BCD码表示的时间10点52分38秒

数字时钟 android 实现 数字时钟程序设计_进制_13

顶层模块

顶层模块就是把上面各个模块根据下图用线连接起来。下图为简洁只画了一个按键

稍微分析端口:

输入:按键1、按键2、时钟输入

输出:6位的位选信号、8位的段码信号

数字时钟 android 实现 数字时钟程序设计_数码管_14

代码如下

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity DigitalClock is	 
	port(
		DigitalClockClk_i:IN STD_LOGIC;
		DigitalClockKeyM_i:IN STD_LOGIC;
		DigitalClockKeyH_i:IN STD_LOGIC;
		
		DigitalClockPosition_o:OUT STD_LOGIC_VECTOR(5 DOWNTO 0);
		DigitalClockSection_o: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
	
end DigitalClock;

architecture rtl of DigitalClock is	
	
	component ClkDiv is
		port(
			clk_i:IN STD_LOGIC;
			N_i:  IN STD_LOGIC_VECTOR(9 DOWNTO 0);
			clk_o:OUT STD_LOGIC);
	end component; 
	
	component JitterElimination is	
		port(
			key: IN STD_LOGIC;
			clk_i:IN STD_LOGIC;
			DLY_OUT:OUT STD_LOGIC);
		
	end component; 
	
	component LEDScan is 
		port(
			CurTime_i:  IN STD_LOGIC_VECTOR(23 DOWNTO 0); 
			clk_i:IN STD_LOGIC;
			Position_o:OUT STD_LOGIC_VECTOR(5 DOWNTO 0);
			Section_o: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
	end component; 	
	
	component Contrl is 
		port(
			MinKey_i:IN STD_LOGIC;
			HourKey_i:IN STD_LOGIC;
			clk_i:IN STD_LOGIC;
			CurrentTimeBCD_o: OUT STD_LOGIC_VECTOR(23 downto 0));
	end component;
	signal N1: STD_LOGIC_VECTOR(9 DOWNTO 0):="0000100010";
	signal Clk1M: STD_LOGIC:='0';
	
	signal N2: STD_LOGIC_VECTOR(9 DOWNTO 0):="1111101000"; 
	signal Clk1k: STD_LOGIC:='0';
	
	signal N3: STD_LOGIC_VECTOR(9 DOWNTO 0):="0000001010";
	signal Clk100Hz: STD_LOGIC:='0';  
	
	signal N4: STD_LOGIC_VECTOR(9 DOWNTO 0):="0000000010";
	signal Clk50Hz: STD_LOGIC:='0';
	
	signal N5: STD_LOGIC_VECTOR(9 DOWNTO 0):="0000110010";
	signal Clk1Hz: STD_LOGIC:='0'; 
	
	signal K1:STD_LOGIC:='1';--未按下 
	signal K2:STD_LOGIC:='1';--未按下
	
	signal BCD:STD_LOGIC_VECTOR(23 downto 0):="000000000000000000000000";
	
begin 
	
	Clock_Map: ClkDiv port map(
			clk_i=>DigitalClockClk_i,
			N_i=>N1,
			clk_o=>Clk1M);
			
	Clock_Map2: ClkDiv port map(
			clk_i=>Clk1M,
			N_i=>N2,
			clk_o=>Clk1k); 
			
	Clock_Map3: ClkDiv port map(
			clk_i=>Clk1k,
			N_i=>N3,
			clk_o=>Clk100Hz);
			
	Clock_Map4: ClkDiv port map(
			clk_i=>Clk100Hz,
			N_i=>N4,
			clk_o=>Clk50Hz); 
			
	Clock_Map5: ClkDiv port map(
			clk_i=>Clk50Hz,
			N_i=>N5,
			clk_o=>Clk1Hz); 
	
	KeyMin_Map:JitterElimination port map(
			key=>DigitalClockKeyM_i,
			clk_i=>Clk100Hz,
			DLY_OUT=>K1);
	KeyHour_Map:JitterElimination port map(
			key=>DigitalClockKeyH_i,
			clk_i=>Clk100Hz,
			DLY_OUT=>K2); 
	Contrl_Map: Contrl port map(
			MinKey_i=>K1,
			HourKey_i=>K2,
			clk_i=>Clk1Hz,
			CurrentTimeBCD_o=>BCD);
			
	LEDScan_Map: LEDScan port map(
			CurTime_i=>BCD, 
			clk_i=>Clk1k,
			Position_o=>DigitalClockPosition_o,
			Section_o=>DigitalClockSection_o);
	
end rtl;

由于33.8688Mhz太大,软件仿真时间会比较慢,所以我没有把软件仿真图放出来。等过些时候到FPGA板子上验证

数字时钟 android 实现 数字时钟程序设计_数字时钟 android 实现_15


实验结果:符合设计预期结果,时分秒显示、按键都正常。

误差分析

由于1Mhz的时钟是由33.8688Mhz经过34分频生成的,所以每秒会有0.1078s的误差,也就是说1s过后此数字钟觉得时间过了1.1078s。分频方面我欠考虑了,如果想要提高精度要在分频方面思考。

生成原理图

数字时钟 android 实现 数字时钟程序设计_数字时钟 android 实现_16

尾声

新司机上路,各位系好安全带