摘要:


互联网的数据爆炸式的增长,而利用 Python 爬虫我们可以获取大量有价值的数据:

1.爬取数据,进行市场调研和商业分析

爬取知乎优质答案,筛选各话题下最优质的内容; 抓取房产网站买卖信息,分析房价变化趋势、做不同区域的房价分析;爬取招聘网站职位信息,分析各行业人才需求情况及薪资水平。

2.作为机器学习、数据挖掘的原始数据

比如你要做一个推荐系统,那么你可以去爬取更多维度的数据,做出更好的模型。

3.爬取优质的资源:图片、文本、视频

爬取商品(店铺)评论以及各种图片网站,获得图片资源以及评论文本数据。

掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现。

但建议你从一开始就要有一个具体的目标,在目标的驱动下,你的学习才会更加精准和高效。这里给你一条平滑的、零基础快速入门的学习路径:

1.了解爬虫的基本原理及过程

2.Requests+Xpath 实现通用爬虫套路

3.了解非结构化数据的存储

4.应对特殊网站的反爬虫措施

5.Scrapy 与 MongoDB,进阶分布式

01

了解爬虫的基本原理及过程

大部分爬虫都是按“发送请求——获得页面——解析页面——抽取并储存内容”这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。

简单来说,我们向服务器发送请求后,会得到返回的页面,通过解析页面之后,我们可以抽取我们想要的那部分信息,并存储在指定的文档或数据库中。

在这部分你可以简单了解 HTTP 协议及网页基础知识,比如 POSTGET、HTML、CSS、JS,简单了解即可,不需要系统学习。

02

学习 Python 包并实现基本的爬虫过程

Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,建议你从requests+Xpath 开始,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。

如果你用过 BeautifulSoup,会发现 Xpath 要省事不少,一层一层检查元素代码的工作,全都省略了。掌握之后,你会发现爬虫的基本套路都差不多,一般的静态网站根本不在话下,小猪、豆瓣、糗事百科、腾讯新闻等基本上都可以上手了。

来看一个爬取豆瓣短评的例子:

python 爬 知乎盐选 python爬取知乎_知乎

选中第一条短评,右键-“检查”,即可查看源代码

python 爬 知乎盐选 python爬取知乎_数据_02

把短评信息的XPath信息复制下来