文章目录
- 数据集的加载
- 空间变换网络的介绍
- 定义网络
- 训练和测试模型
- 可视化 STN 结果
官方文档地址:
https://pytorch.org/tutorials/intermediate/spatial_transformer_tutorial.html
在本教程中,您将学会如何使用 空间变换网络 的视觉注意力机制来扩充网络。如果需要了解更多 空间变换网络 可以在 DeepMind 论文中详细阅读。
空间变换网络允许神经网络学习如何对输入图像执行空间变换,以增强模型的几何不变性。例如,他可以裁剪感兴趣的区域,缩放并校正图像的方向。这可能是一个有用的机制,因为CNN不会对旋转和缩放以及更一般的仿射变换保持不变。
对于 STN 的最大优点之一就是:能够将其简单地插入到任何现有的 CNN 中,而无需进行任何修改。
# License: BSD
# Author: Ghassen Hamrouni
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy as np
plt.ion() # interactive mode
数据集的加载
本文以经典的 MNIST 数据集为例,使用标准卷积网络和空间变换网络。
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Training dataset
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(root='.', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])), batch_size=64, shuffle=True, num_workers=4)
# Test dataset
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(root='.', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])), batch_size=64, shuffle=True, num_workers=4)
空间变换网络的介绍
空间变换网络主要由三个主要部分组成:
- 本地网络(Localisation Network): 本地网络为常规的 CNN,是一个用来回归变换参数θ的网络。
- 网格生成器(Grid Genator): 网格生成器在输入图像中生成与输出图像的每个像素相对应的坐标网络。
- 采样器(Sampler): 采样器利用采样网络和输入的特征图同时作为输入,然后输入,得到了特征图经过变换之后的结果。
定义网络
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
# Spatial transformer localization-network
self.localization = nn.Sequential(
nn.Conv2d(1, 8, kernel_size=7),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True),
nn.Conv2d(8, 10, kernel_size=5),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True)
)
# Regressor for the 3 * 2 affine matrix
self.fc_loc = nn.Sequential(
nn.Linear(10 * 3 * 3, 32),
nn.ReLU(True),
nn.Linear(32, 3 * 2)
)
# Initialize the weights/bias with identity transformation
self.fc_loc[2].weight.data.zero_()
self.fc_loc[2].bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))
# Spatial transformer network forward function
def stn(self, x):
xs = self.localization(x)
xs = xs.view(-1, 10 * 3 * 3)
theta = self.fc_loc(xs)
theta = theta.view(-1, 2, 3)
grid = F.affine_grid(theta, x.size())
x = F.grid_sample(x, grid)
return x
def forward(self, x):
# transform the input
x = self.stn(x)
# Perform the usual forward pass
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
model = Net().to(device)
训练和测试模型
使用 SGD
算法训练模型。网络正在以监督学习的方式来学习分类任务。同时该模型以端到端的方式自动学习 STN
。
optimizer = optim.SGD(model.parameters(), lr=0.01)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 500 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
#
# A simple test procedure to measure STN the performances on MNIST.
#
def test():
with torch.no_grad():
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
# sum up batch loss
test_loss += F.nll_loss(output, target, size_average=False).item()
# get the index of the max log-probability
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'
.format(test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
可视化 STN 结果
现在,我们将检查学习到的视觉注意力机制的结果。
我们定义了一个小的辅助函数,以便训练的时候进行可视化转换。
def convert_image_np(inp):
"""Convert a Tensor to numpy image."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
return inp
# We want to visualize the output of the spatial transformers layer
# after the training, we visualize a batch of input images and
# the corresponding transformed batch using STN.
def visualize_stn():
with torch.no_grad():
# Get a batch of training data
data = next(iter(test_loader))[0].to(device)
input_tensor = data.cpu()
transformed_input_tensor = model.stn(data).cpu()
in_grid = convert_image_np(
torchvision.utils.make_grid(input_tensor))
out_grid = convert_image_np(
torchvision.utils.make_grid(transformed_input_tensor))
# Plot the results side-by-side
f, axarr = plt.subplots(1, 2)
axarr[0].imshow(in_grid)
axarr[0].set_title('Dataset Images')
axarr[1].imshow(out_grid)
axarr[1].set_title('Transformed Images')
for epoch in range(1, 20 + 1):
train(epoch)
test()
# Visualize the STN transformation on some input batch
visualize_stn()
plt.ioff()
plt.show()
输出:
Train Epoch: 18 [0/60000 (0%)] Loss: 0.197388
Train Epoch: 18 [32000/60000 (53%)] Loss: 0.070883
Test set: Average loss: 0.0386, Accuracy: 9885/10000 (99%)
Train Epoch: 19 [0/60000 (0%)] Loss: 0.127624
Train Epoch: 19 [32000/60000 (53%)] Loss: 0.078326
Test set: Average loss: 0.0345, Accuracy: 9898/10000 (99%)
Train Epoch: 20 [0/60000 (0%)] Loss: 0.035128
Train Epoch: 20 [32000/60000 (53%)] Loss: 0.028159
Test set: Average loss: 0.0361, Accuracy: 9892/10000 (99%)