,零碎基础知识
1),二元运算符的运算规则:
1,如果两个操作数有一个为long,那结果也为long;
2,没有long时,结果为int。即使操作数全为short,byte结果也为int;
3,如果两个操作数有一个为double,则结果为double;
4,只有两个操作数都是float,则结果才为float;
2),取模运算:
1,其操作数可以为浮点数,一般使用整数,结果是“余数”,“余数”符号和左边操作数相同;
如:7%3=1
1,Java中浮点数是不精确的,所以不能用于比较,如果非要比较,请使用BigInteger或者BigDecimal类型比较(存在于java.math包中)
BigInteger:实现了任意精度的整数运算
BigDecimal:实现了任意精度的浮点运算
2,所以比较两个浮点数是否相等常常会出现错误的结果。正确的比较方法是判断两个浮点数之差的绝对值是否小于一个很小的数:
// 比较x和y是否相等,先计算其差的绝对值:
double r = Math.abs(x - y);
// 再判断绝对值是否足够小:
if (r < 0.00001) {
// 可以认为相等
} else {
// 不相等
}
1,构造方法
作用:对类进行初始化。
如果自己没用定义构造方法,程序会自动为当前类设定一个无参的构造方法。
当有其他类继承该类的时候,子类的构造方法的第一句必须要先用super调用父类中定义好的构造方法。
2,重载
重载:方法名相同,但各自的参数不同,称为方法的重载(Overload)。
注意:方法重载的返回值类型通常都是相同的。
方法重载的目的:功能类似的方法使用同一名字,更容易记住,因此,调用起来更简单。
在一个类中,我们可以定义多个方法。如果有一系列方法,它们的功能都是类似的,只有参数有所不同,那么,可以把这一组方法名做成同名方法。例如,在Hello
类中,定义多个hello()
方法:
class Hello {
public void hello() {
System.out.println("Hello, world!");
}
public void hello(String name) {
System.out.println("Hello, " + name + "!");
}
public void hello(String name, int age) {
if (age < 18) {
System.out.println("Hi, " + name + "!");
} else {
System.out.println("Hello, " + name + "!");
}
}
}
3,继承
继承是面向对象编程中非常强大的一种机制,它首先可以复用代码。当我们让Student
从Person
继承时,Student
就获得了Person
的所有功能,我们只需要为Student
编写新增的功能。
Java使用extends
关键字来实现继承。
在OOP的术语中,我们把Person
称为超类(super class),父类(parent class),基类(base class),把Student
称为子类(subclass),扩展类(extended class)。
1),继承树
注意到我们在定义Person
的时候,没有写extends
。在Java中,没有明确写extends
的类,编译器会自动加上extends Object
。所以,任何类,除了Object
,都会继承自某个类。下图是Person
、Student
的继承树:
┌───────────┐
│ Object │
└───────────┘
▲
│
┌───────────┐
│ Person │
└───────────┘
▲
│
┌───────────┐
│ Student │
└───────────┘
2),单继承
Java只允许一个class继承自一个类,因此,一个类有且仅有一个父类。只有
Object
特殊,它没有父类。
3),protected
继承有个特点,就是子类无法访问父类的private
字段或者private
方法。例如,Student
类就无法访问Person
类的name
和age
字段:
class Person {
private String name;
private int age;
}
class Student extends Person {
public String hello() {
return "Hello, " + name; // 编译错误:无法访问name字段
}
}
这使得继承的作用被削弱了。为了让子类可以访问父类的字段,我们需要把private
改为protected
。用protected
修饰的字段可以被子类访问:
class Person {
protected String name;
protected int age;
}
class Student extends Person {
public String hello() {
return "Hello, " + name; // OK!
}
}
因此,protected
关键字可以把字段和方法的访问权限控制在继承树内部,一个protected
字段和方法可以被其子类,以及子类的子类所访问。
4),super
在Java中任何class
的构造方法,第一行语句必须是调用父类的构造方法。如果没有明确地调用父类的构造方法,编译器会帮我们自动加一句super();
,所以,Student
类的构造方法实际上是这样:
class Student extends Person {
protected int score;
public Student(String name, int age, int score) {
super(); // 自动调用父类的构造方法
this.score = score;
}
}
4,多态(需要再仔细研究下)
现在,我们考虑一种情况,如果子类覆写了父类的方法:
// override
public class Main {
public static void main(String[] args) {
// Java的实例方法调用是基于运行时的实际类型的动态调用,而非变量的声明类型
Person p = new Student();
p.run(); // 应该打印Person.run还是Student.run?
}
}
class Person {
public void run() {
System.out.println("Person.run");
}
}
class Student extends Person {
@Override
public void run() {
System.out.println("Student.run");
}
}
那么,一个实际类型为Student
,引用类型为Person
的变量,调用其run()
方法,调用的是Person
还是Student
的run()
方法?
运行一下上面的代码就可以知道,实际上调用的方法是Student
的run()
方法。因此可得出结论:
Java的实例方法调用是基于运行时的实际类型的动态调用,而非变量的声明类型。
这个非常重要的特性在面向对象编程中称之为多态。它的英文拼写非常复杂:Polymorphic。
覆写:在继承关系中,子类如果定义了一个与父类方法签名完全相同的方法,被称为覆写(Override)。
1),覆写Object方法
因为所有的class
最终都继承自Object
,而Object
定义了几个重要的方法:
-
toString()
:把instance输出为String
; -
equals()
:判断两个instance是否逻辑相等; -
hashCode()
:计算一个instance的哈希值。
在必要的情况下,我们可以覆写Object
的这几个方法。例如:
class Person {
...
// 显示更有意义的字符串:
@Override
public String toString() {
return "Person:name=" + name;
}
// 比较是否相等:
@Override
public boolean equals(Object o) {
// 当且仅当o为Person类型:
if (o instanceof Person) {
Person p = (Person) o;
// 并且name字段相同时,返回true:
return this.name.equals(p.name);
}
return false;
}
// 计算hash:
@Override
public int hashCode() {
return this.name.hashCode();
}
}
2),调用super
在子类的覆写方法中,如果要调用父类的被覆写的方法,可以通过super
来调用。例如:
class Person {
protected String name;
public String hello() {
return "Hello, " + name;
}
}
Student extends Person {
@Override
public String hello() {
// 调用父类的hello()方法:
return super.hello() + "!";
}
}
3),final
继承可以允许子类覆写父类的方法。如果一个父类不允许子类对它的某个方法进行覆写,可以把该方法标记为final
。用final
修饰的方法不能被Override
:
class Person {
protected String name;
public final String hello() {
return "Hello, " + name;
}
}
Student extends Person {
// compile error: 不允许覆写
@Override
public String hello() {
}
}
如果一个类不希望任何其他类继承自它,那么可以把这个类本身标记为final
。用final
修饰的类不能被继承:
final class Person {
protected String name;
}
// compile error: 不允许继承自Person
Student extends Person {
}
对于一个类的实例字段,同样可以用final
修饰。用final
修饰的字段在初始化后不能被修改。例如:
class Person {
public final String name = "Unamed";
}
对final
字段重新赋值会报错:
Person p = new Person();
p.name = "New Name"; // compile error!
可以在构造方法中初始化final字段:
class Person {
public final String name;
public Person(String name) {
this.name = name;
}
}
这种方法更为常用,因为可以保证实例一旦创建,其final
字段就不可修改。
5,抽象类
1),如果一个class
定义了方法,但没有具体执行代码,这个方法就是抽象方法,抽象方法用abstract
修饰。
2),抽象类本身被设计成只能用于被继承,因此,抽象类可以强迫子类实现其定义的抽象方法,否则编译会报错。因此,抽象方法实际上相当于定义了“规范”。
例如,Person
类定义了抽象方法run()
,那么,在实现子类Student
的时候,就必须覆写run()
方法:
// abstract class
public class Main {
public static void main(String[] args) {
Person p = new Student();
p.run();
}
}
abstract class Person {
// abstract必须要指定,否则该方法就是个非抽象方法,必须要写出实现部分才能编译不报错
public abstract void run();
}
class Student extends Person {
@Override
public void run() {
System.out.println("Student.run");
}
}
6,接口
在抽象类中,抽象方法本质上是定义接口规范:即规定高层类的接口,从而保证所有子类都有相同的接口实现,这样,多态就能发挥出威力。
1),接口中没有字段
如果一个抽象类没有字段,所有方法全部都是抽象方法:
abstract class Person {
public abstract void run();
public abstract String getName();
}
就可以把该抽象类改写为接口:interface
。
2),接口关键字
在Java中,使用interface
可以声明一个接口:
interface Person {
void run();
String getName();
}
所谓interface
,就是比抽象类还要抽象的纯抽象接口,因为它连字段都不能有。因为接口定义的所有方法默认都是public abstract
的,所以这两个修饰符不需要写出来(写不写效果都一样)。
3),实现关键字
当一个具体的class
去实现一个interface
时,需要使用implements
关键字。举个例子:
class Student implements Person {
private String name;
public Student(String name) {
this.name = name;
}
@Override
public void run() {
System.out.println(this.name + " run");
}
@Override
public String getName() {
return this.name;
}
}
4),多继承(多实现)
我们知道,在Java中,一个类只能继承自另一个类,不能从多个类继承。但是,一个类可以实现多个interface
,例如:
class Student implements Person, Hello { // 实现了两个interface
...
}
5),术语
注意区分术语:
Java的接口特指interface
的定义,表示一个接口类型和一组方法签名,而编程接口泛指接口规范,如方法签名,数据格式,网络协议等。
6),抽象类和接口的对比
如下:
abstract class | interface | |
继承 | 只能extends一个class | 可以implements多个interface |
字段 | 可以定义实例字段 | 不能定义实例字段 |
抽象方法 | 可以定义抽象方法 | 可以定义抽象方法 |
非抽象方法 | 可以定义非抽象方法 | 可以定义default方法 |
7),接口继承
一个interface
可以继承自另一个interface
。interface
继承自interface
使用extends
,它相当于扩展了接口的方法。例如:
interface Hello {
void hello();
}
interface Person extends Hello {
void run();
String getName();
}
此时,Person
接口继承自Hello
接口,因此,Person
接口现在实际上有3个抽象方法签名,其中一个来自继承的Hello
接口。
8),继承关系
合理设计interface
和abstract class
的继承关系,可以充分复用代码。一般来说,公共逻辑适合放在abstract class
中,具体逻辑放到各个子类,而接口层次代表抽象程度。可以参考Java的集合类定义的一组接口、抽象类以及具体子类的继承关系:
┌───────────────┐
│ Iterable │
└───────────────┘
▲ ┌───────────────────┐
│ │ Object │
┌───────────────┐ └───────────────────┘
│ Collection │ ▲
└───────────────┘ │
▲ ▲ ┌───────────────────┐
│ └──────────│AbstractCollection │
┌───────────────┐ └───────────────────┘
│ List │ ▲
└───────────────┘ │
▲ ┌───────────────────┐
└──────────│ AbstractList │
└───────────────────┘
▲ ▲
│ │
│ │
┌────────────┐ ┌────────────┐
│ ArrayList │ │ LinkedList │
└────────────┘ └────────────┘
在使用的时候,实例化的对象永远只能是某个具体的子类,但总是通过接口去引用它,因为接口比抽象类更抽象:
List list = new ArrayList(); // 用List接口引用具体子类的实例
Collection coll = list; // 向上转型为Collection接口
Iterable it = coll; // 向上转型为Iterable接口
9),default方法(JDK>=1.8)
在接口中,可以定义default
方法。例如,把Person
接口的run()
方法改为default
方法:
// interface
public class Main {
public static void main(String[] args) {
Person p = new Student("Xiao Ming");
p.run();
}
}
interface Person {
String getName();
default void run() {
System.out.println(getName() + " run");
}
}
class Student implements Person {
private String name;
public Student(String name) {
this.name = name;
}
public String getName() {
return this.name;
}
}
实现类可以不必覆写
default
方法。
default
方法的目的是,当我们需要给接口新增一个方法时,会涉及到修改全部子类。如果新增的是default
方法,那么子类就不必全部修改,只需要在需要覆写的地方去覆写新增方法。
default
方法和抽象类的普通方法是有所不同的。因为interface
没有字段,default
方法无法访问字段,而抽象类的普通方法可以访问实例字段。
7,静态字段和静态方法
1),静态字段
在一个class
中定义的字段,我们称之为实例字段。实例字段的特点是,每个实例都有独立的字段,各个实例的同名字段互不影响。
还有一种字段,是用static
修饰的字段,称为静态字段:static field
。
实例字段在每个实例中都有自己的一个独立“空间”,但是静态字段只有一个共享“空间”,所有实例都会共享该字段。举个例子:
class Person {
public String name;
public int age;
// 定义静态字段number:
public static int number;
}
我们来看看下面的代码:
// static field
public class Main {
public static void main(String[] args) {
Person ming = new Person("Xiao Ming", 12);
Person hong = new Person("Xiao Hong", 15);
ming.number = 88;
System.out.println(hong.number);
hong.number = 99;
System.out.println(ming.number);
}
}
class Person {
public String name;
public int age;
public static int number;
public Person(String name, int age) {
this.name = name;
this.age = age;
}
}
虽然实例可以访问静态字段,但是它们指向的其实都是Person class
的静态字段。所以,所有实例共享一个静态字段。
因此,不推荐用实例变量.静态字段
去访问静态字段,因为在Java程序中,实例对象并没有静态字段。在代码中,实例对象能访问静态字段只是因为编译器可以根据实例类型自动转换为类名.静态字段
来访问静态对象。
推荐用类名来访问静态字段。可以把静态字段理解为描述class
本身的字段(非实例字段)。对于上面的代码,更好的写法是:
Person.number = 99;
System.out.println(Person.number);
2),静态方法
有静态字段,就有静态方法。用static
修饰的方法称为静态方法。
调用实例方法必须通过一个实例变量,而调用静态方法则不需要实例变量,通过类名就可以调用。静态方法类似其它编程语言的函数。例如:
// static method
public class Main {
public static void main(String[] args) {
Person.setNumber(99);
System.out.println(Person.number);
}
}
class Person {
public static int number;
public static void setNumber(int value) {
number = value;
}
}
因为静态方法属于class
而不属于实例,因此,静态方法内部,无法访问this
变量,也无法访问实例字段,它只能访问静态字段。
通过实例变量也可以调用静态方法,但这只是编译器自动帮我们把实例改写成类名而已。
通常情况下,通过实例变量访问静态字段和静态方法,会得到一个编译警告。
静态方法经常用于工具类。例如:
Arrays.sort()
Math.random()
静态方法也经常用于辅助方法。注意到Java程序的入口main()
也是静态方法。
3),接口的静态字段
因为interface
是一个纯抽象类,所以它不能定义实例字段。但是,interface
是可以有静态字段的,并且静态字段必须为final
类型:
public interface Person {
public static final int MALE = 1;
public static final int FEMALE = 2;
}
实际上,因为interface
的字段只能是public static final
类型,所以我们可以把这些修饰符都去掉,上述代码可以简写为:
public interface Person {
// 编译器会自动加上public statc final:
int MALE = 1;
int FEMALE = 2;
}
8,反射(Reflection)
1),什么是反射?
Java的反射是指程序在运行期间可以拿到一个对象的所有信息。
正常情况下,如果我们要调用一个对象的方法,或者访问一个对象的字段,通常会传入对象实例:
// Main.java
import com.itranswarp.learnjava.Person;
public class Main {
String getFullName(Person p) {
return p.getFirstName() + " " + p.getLastName();
}
}
但是,如果不能获得Person
类,只有一个Object
实例,比如这样:
String getFullName(Object obj) {
return ???
}
怎么办?有童鞋会说:强制转型啊!
String getFullName(Object obj) {
Person p = (Person) obj;
return p.getFirstName() + " " + p.getLastName();
}
强制转型的时候,你会发现一个问题:编译上面的代码,仍然需要引用Person
类。不然,去掉import
语句,你看能不能编译通过?
所以,反射是为了解决在运行期,对某个实例一无所知的情况下,如何调用其方法。
仔细思考,我们可以得出结论:class
(包括interface
)的本质是数据类型(Type
)。无继承关系的数据类型无法赋值:
Number n = new Double(123.456); // OK
String s = new Double(123.456); // compile error!
而class
是由JVM在执行过程中动态加载的。JVM在第一次读取到一种class
类型时,将其加载进内存。
每加载一种class
,JVM就为其创建一个Class
类型的实例,并关联起来。注意:这里的Class
类型是一个名叫Class
的class
。它长这样:
public final class Class {
private Class() {}
}
以String
类为例,当JVM加载String
类时,它首先读取String.class
文件到内存,然后,为String
类创建一个Class
实例并关联起来:
Class cls = new Class(String);
这个Class
实例是JVM内部创建的,如果我们查看JDK源码,可以发现Class
类的构造方法是private
,只有JVM能创建Class
实例,我们自己的Java程序是无法创建Class
实例的。
所以,JVM持有的每个Class
实例都指向一个数据类型(class
或interface
):
┌───────────────────────────┐
│ Class Instance │──────> String
├───────────────────────────┤
│name = "java.lang.String" │
└───────────────────────────┘
┌───────────────────────────┐
│ Class Instance │──────> Random
├───────────────────────────┤
│name = "java.util.Random" │
└───────────────────────────┘
┌───────────────────────────┐
│ Class Instance │──────> Runnable
├───────────────────────────┤
│name = "java.lang.Runnable"│
└───────────────────────────┘
一个Class
实例包含了该class
的所有完整信息:
┌───────────────────────────┐
│ Class Instance │──────> String
├───────────────────────────┤
│name = "java.lang.String" │
├───────────────────────────┤
│package = "java.lang" │
├───────────────────────────┤
│super = "java.lang.Object" │
├───────────────────────────┤
│interface = CharSequence...│
├───────────────────────────┤
│field = value[],hash,... │
├───────────────────────────┤
│method = indexOf()... │
└───────────────────────────┘
由于JVM为每个加载的class
创建了对应的Class
实例,并在实例中保存了该class
的所有信息,包括类名、包名、父类、实现的接口、所有方法、字段等,因此,如果获取了某个Class
实例,我们就可以通过这个Class
实例获取到该实例对应的class
的所有信息。
这种通过
Class
实例获取class
信息的方法称为反射(Reflection)。
2),Class类
1),如何获取一个class
的Class
实例?
有三个方法:
方法一:直接通过一个class
的静态变量class
获取:
Class cls = String.class;
方法二:如果我们有一个实例变量,可以通过该实例变量提供的getClass()
方法获取:
String s = "Hello";
Class cls = s.getClass();
方法三:如果知道一个class
的完整类名,可以通过静态方法Class.forName()
获取:
Class cls = Class.forName("java.lang.String");
因为Class
实例在JVM中是唯一的,所以,上述方法获取的Class
实例是同一个实例。可以用==
比较两个Class
实例:
Class cls1 = String.class;
String s = "Hello";
Class cls2 = s.getClass();
boolean sameClass = cls1 == cls2; // true
注意一下Class
实例比较和instanceof
的差别:
Integer n = new Integer(123);
boolean b3 = n instanceof Integer; // true
boolean b4 = n instanceof Number; // true
boolean b1 = n.getClass() == Integer.class; // true
boolean b2 = n.getClass() == Number.class; // false
用instanceof
不但匹配当前类型,还匹配当前类型的子类。而用==
判断class
实例可以精确地判断数据类型,但不能作子类型比较。
通常情况下,我们应该用instanceof
判断数据类型,因为面向抽象编程的时候,我们不关心具体的子类型。只有在需要精确判断一个类型是不是某个class
的时候,我们才使用==
判断class
实例。
因为反射的目的是为了获得某个实例的信息。因此,当我们拿到某个Object
实例时,我们可以通过反射获取该Object
的class
信息:
void printObjectInfo(Object obj) {
Class cls = obj.getClass();
}
要从Class
实例获取获取的基本信息,参考下面的代码:
// reflection
public class Main {
public static void main(String[] args) {
printClassInfo("".getClass());
printClassInfo(Runnable.class);
printClassInfo(java.time.Month.class);
printClassInfo(String[].class);
printClassInfo(int.class);
}
static void printClassInfo(Class cls) {
System.out.println("Class name: " + cls.getName());
System.out.println("Simple name: " + cls.getSimpleName());
if (cls.getPackage() != null) {
System.out.println("Package name: " + cls.getPackage().getName());
}
System.out.println("is interface: " + cls.isInterface());
System.out.println("is enum: " + cls.isEnum());
System.out.println("is array: " + cls.isArray());
System.out.println("is primitive: " + cls.isPrimitive());
}
}
注意到数组(例如String[]
)也是一种Class
,而且不同于String.class
,它的类名是[Ljava.lang.String
。此外,JVM为每一种基本类型如int也创建了Class
,通过int.class
访问。
如果获取到了一个Class
实例,我们就可以通过该Class
实例来创建对应类型的实例:
// 获取String的Class实例:
Class cls = String.class;
// 创建一个String实例:
String s = (String) cls.newInstance();
上述代码相当于new String()
。通过Class.newInstance()
可以创建类实例,它的局限是:只能调用public
的无参数构造方法。带参数的构造方法,或者非public
的构造方法都无法通过Class.newInstance()
被调用。
2),动态加载
JVM在执行Java程序的时候,并不是一次性把所有用到的class全部加载到内存,而是第一次需要用到class时才加载。例如:
// Main.java
public class Main {
public static void main(String[] args) {
if (args.length > 0) {
create(args[0]);
}
}
static void create(String name) {
Person p = new Person(name);
}
}
当执行Main.java
时,由于用到了Main
,因此,JVM首先会把Main.class
加载到内存。然而,并不会加载Person.class
,除非程序执行到create()
方法,JVM发现需要加载Person
类时,才会首次加载Person.class
。如果没有执行create()
方法,那么Person.class
根本就不会被加载。
这就是JVM动态加载class
的特性。
动态加载class
的特性对于Java程序非常重要。利用JVM动态加载class
的特性,我们才能在运行期根据条件加载不同的实现类。例如,Commons Logging总是优先使用Log4j,只有当Log4j不存在时,才使用JDK的logging。利用JVM动态加载特性,大致的实现代码如下:
// Commons Logging优先使用Log4j:
LogFactory factory = null;
if (isClassPresent("org.apache.logging.log4j.Logger")) {
factory = createLog4j();
} else {
factory = createJdkLog();
}
boolean isClassPresent(String name) {
try {
Class.forName(name);
return true;
} catch (Exception e) {
return false;
}
}
这就是为什么我们只需要把Log4j的jar包放到classpath中,Commons Logging就会自动使用Log4j的原因。
3),小结
JVM为每个加载的
class
及interface
创建了对应的Class
实例来保存class
及interface
的所有信息;获取一个
class
对应的Class
实例后,就可以获取该class
的所有信息;通过Class实例获取
class
信息的方法称为反射(Reflection);JVM总是动态加载
class
,可以在运行期根据条件来控制加载class。
3),访问字段
对任意的一个Object
实例,只要我们获取了它的Class
,就可以获取它的一切信息。
我们先看看如何通过Class
实例获取字段信息。Class
类提供了以下几个方法来获取字段:
- Field getField(name):根据字段名获取某个public的field(包括父类)
- Field getDeclaredField(name):根据字段名获取当前类的某个field(不包括父类)
- Field[] getFields():获取所有public的field(包括父类)
- Field[] getDeclaredFields():获取当前类的所有field(不包括父类)
我们来看一下示例代码:
public class Main {
public static void main(String[] args) throws Exception {
Class stdClass = Student.class;
// 获取public字段"score":
System.out.println(stdClass.getField("score"));
// 获取继承的public字段"name":
System.out.println(stdClass.getField("name"));
// 获取private字段"grade":
System.out.println(stdClass.getDeclaredField("grade"));
}
}
class Student extends Person {
public int score;
private int grade;
}
class Person {
public String name;
}
上述代码首先获取Student
的Class
实例,然后,分别获取public
字段、继承的public
字段以及private
字段,打印出的Field
类似:
public int Student.score
public java.lang.String Person.name
private int Student.grade
一个Field
对象包含了一个字段的所有信息:
-
getName()
:返回字段名称,例如,"name"
; -
getType()
:返回字段类型,也是一个Class
实例,例如,String.class
; -
getModifiers()
:返回字段的修饰符,它是一个int
,不同的bit表示不同的含义。
以String
类的value
字段为例,它的定义是:
public final class String {
private final byte[] value;
}
我们用反射获取该字段的信息,代码如下:
Field f = String.class.getDeclaredField("value");
f.getName(); // "value"
f.getType(); // class [B 表示byte[]类型
int m = f.getModifiers();
Modifier.isFinal(m); // true
Modifier.isPublic(m); // false
Modifier.isProtected(m); // false
Modifier.isPrivate(m); // true
Modifier.isStatic(m); // false
1),获取字段值
利用反射拿到字段的一个Field
实例只是第一步,我们还可以拿到一个实例对应的该字段的值。
例如,对于一个Person
实例,我们可以先拿到name
字段对应的Field
,再获取这个实例的name
字段的值:
public class Main {
public static void main(String[] args) throws Exception {
Object p = new Person("Xiao Ming");
Class c = p.getClass();
Field f = c.getDeclaredField("name");
Object value = f.get(p);
System.out.println(value); // "Xiao Ming"
}
}
class Person {
private String name;
public Person(String name) {
this.name = name;
}
}
上述代码先获取Class
实例,再获取Field
实例,然后,用Field.get(Object)
获取指定实例的指定字段的值。
运行代码,如果不出意外,会得到一个IllegalAccessException
,这是因为name
被定义为一个private
字段,正常情况下,Main
类无法访问Person
类的private
字段。要修复错误,可以将private
改为public
,或者,在调用Object value = f.get(p);
前,先写一句:
f.setAccessible(true);
调用Field.setAccessible(true)
的意思是,别管这个字段是不是public
,一律允许访问。
可以试着加上上述语句,再运行代码,就可以打印出private
字段的值。
有童鞋会问:如果使用反射可以获取private
字段的值,那么类的封装还有什么意义?
答案是正常情况下,我们总是通过p.name
来访问Person
的name
字段,编译器会根据public
、protected
和private
决定是否允许访问字段,这样就达到了数据封装的目的。
而反射是一种非常规的用法,使用反射,首先代码非常繁琐,其次,它更多地是给工具或者底层框架来使用,目的是在不知道目标实例任何信息的情况下,获取特定字段的值。
此外,setAccessible(true)
可能会失败。如果JVM运行期存在SecurityManager
,那么它会根据规则进行检查,有可能阻止setAccessible(true)
。例如,某个SecurityManager
可能不允许对java
和javax
开头的package
的类调用setAccessible(true)
,这样可以保证JVM核心库的安全。
1),设置字段值
通过Field实例既然可以获取到指定实例的字段值,自然也可以设置字段的值。
设置字段值是通过Field.set(Object, Object)
实现的,其中第一个Object
参数是指定的实例,第二个Object
参数是待修改的值。示例代码如下:
public class Main {
public static void main(String[] args) throws Exception {
Person p = new Person("Xiao Ming");
System.out.println(p.getName()); // "Xiao Ming"
Class c = p.getClass();
Field f = c.getDeclaredField("name");
f.setAccessible(true);
f.set(p, "Xiao Hong");
System.out.println(p.getName()); // "Xiao Hong"
}
}
class Person {
private String name;
public Person(String name) {
this.name = name;
}
public String getName() {
return this.name;
}
}
运行上述代码,打印的name
字段从Xiao Ming
变成了Xiao Hong
,说明通过反射可以直接修改字段的值。
同样的,修改非public
字段,需要首先调用setAccessible(true)
。
2),小结
Java的反射API提供的
Field
类封装了字段的所有信息:通过
Class
实例的方法可以获取Field
实例:getField()
,getFields()
,getDeclaredField()
,getDeclaredFields()
;通过Field实例可以获取字段信息:
getName()
,getType()
,getModifiers()
;通过Field实例可以读取或设置某个对象的字段,如果存在访问限制,要首先调用
setAccessible(true)
来访问非public
字段。通过反射读写字段是一种非常规方法,它会破坏对象的封装。
4),调用方法
我们已经能通过Class
实例获取所有Field
对象,同样的,可以通过Class
实例获取所有Method
信息。Class
类提供了以下几个方法来获取Method
:
-
Method getMethod(name, Class...)
:获取某个public
的Method
(包括父类) -
Method getDeclaredMethod(name, Class...)
:获取当前类的某个Method
(不包括父类) -
Method[] getMethods()
:获取所有public
的Method
(包括父类) -
Method[] getDeclaredMethods()
:获取当前类的所有Method
(不包括父类)
我们来看一下示例代码:
public class Main {
public static void main(String[] args) throws Exception {
Class stdClass = Student.class;
// 获取public方法getScore,参数为String:
System.out.println(stdClass.getMethod("getScore", String.class));
// 获取继承的public方法getName,无参数:
System.out.println(stdClass.getMethod("getName"));
// 获取private方法getGrade,参数为int:
System.out.println(stdClass.getDeclaredMethod("getGrade", int.class));
}
}
class Student extends Person {
public int getScore(String type) {
return 99;
}
private int getGrade(int year) {
return 1;
}
}
class Person {
public String getName() {
return "Person";
}
}
上述代码首先获取Student
的Class
实例,然后,分别获取public
方法、继承的public
方法以及private
方法,打印出的Method
类似:
public int Student.getScore(java.lang.String)
public java.lang.String Person.getName()
private int Student.getGrade(int)
一个Method
对象包含一个方法的所有信息:
-
getName()
:返回方法名称,例如:"getScore"
; -
getReturnType()
:返回方法返回值类型,也是一个Class实例,例如:String.class
; -
getParameterTypes()
:返回方法的参数类型,是一个Class数组,例如:{String.class, int.class}
; -
getModifiers()
:返回方法的修饰符,它是一个int
,不同的bit表示不同的含义。
1),调用方法
当我们获取到一个Method
对象时,就可以对它进行调用。我们以下面的代码为例:
String s = "Hello world";
String r = s.substring(6); // "world"
如果用反射来调用substring
方法,需要以下代码:
public class Main {
public static void main(String[] args) throws Exception {
// String对象:
String s = "Hello world";
// 获取String substring(int)方法,参数为int:
Method m = String.class.getMethod("substring", int.class);
// 在s对象上调用该方法并获取结果:
String r = (String) m.invoke(s, 6);
// 打印调用结果:
System.out.println(r);
}
}
注意到substring()
有两个重载方法,我们获取的是String substring(int)
这个方法。
思考一下如何获取String substring(int, int)
方法。参照以下实现方法:
public class Main {
public static void main(String[] args) throws Exception {
// String对象:
String s = "Hello world";
// 获取String substring(int,int)方法,参数为int:
Method m = String.class.getMethod("substring", int.class, int.class);
// 在s对象上调用该方法并获取结果:
String r = (String) m.invoke(s, 6 , 8);
// 打印调用结果:
System.out.println(r);
}
}
对Method
实例调用invoke
就相当于调用该方法,invoke
的第一个参数是对象实例,即在哪个实例上调用该方法,后面的可变参数要与方法参数一致,否则将报错。
2),调用静态方法
如果获取到的Method表示一个静态方法,调用静态方法时,由于无需指定实例对象,所以invoke
方法传入的第一个参数永远为null
。我们以Integer.parseInt(String)
为例:
public class Main {
public static void main(String[] args) throws Exception {
// 获取Integer.parseInt(String)方法,参数为String:
Method m = Integer.class.getMethod("parseInt", String.class);
// 调用该静态方法并获取结果:
Integer n = (Integer) m.invoke(null, "12345");
// 打印调用结果:
System.out.println(n);
}
}
3),调用非public方法
和Field类似,对于非public方法,我们虽然可以通过Class.getDeclaredMethod()
获取该方法实例,但直接对其调用将得到一个IllegalAccessException
。为了调用非public方法,我们通过Method.setAccessible(true)
允许其调用:
public class Main {
public static void main(String[] args) throws Exception {
Person p = new Person();
Method m = p.getClass().getDeclaredMethod("setName", String.class);
m.setAccessible(true);
m.invoke(p, "Bob");
System.out.println(p.name);
}
}
class Person {
String name;
private void setName(String name) {
this.name = name;
}
}
此外,setAccessible(true)
可能会失败。如果JVM运行期存在SecurityManager
,那么它会根据规则进行检查,有可能阻止setAccessible(true)
。例如,某个SecurityManager
可能不允许对java
和javax
开头的package
的类调用setAccessible(true)
,这样可以保证JVM核心库的安全。
4),多态
我们来考察这样一种情况:一个Person
类定义了hello()
方法,并且它的子类Student
也覆写了hello()
方法,那么,从Person.class
获取的Method
,作用于Student
实例时,调用的方法到底是哪个?
public class Main {
public static void main(String[] args) throws Exception {
// 获取Person的hello方法:
Method h = Person.class.getMethod("hello");
// 对Student实例调用hello方法:
h.invoke(new Student());
}
}
class Person {
public void hello() {
System.out.println("Person:hello");
}
}
class Student extends Person {
public void hello() {
System.out.println("Student:hello");
}
}
运行上述代码,发现打印出的是Student:hello
,因此,使用反射调用方法时,仍然遵循多态原则:即总是调用实际类型的覆写方法(如果存在)。上述的反射代码:
Method m = Person.class.getMethod("hello");
m.invoke(new Student());
实际上相当于:
Person p = new Student();
p.hello();
5),小结
Java的反射API提供的Method对象封装了方法的所有信息:
通过
Class
实例的方法可以获取Method
实例:getMethod()
,getMethods()
,getDeclaredMethod()
,getDeclaredMethods()
;通过
Method
实例可以获取方法信息:getName()
,getReturnType()
,getParameterTypes()
,getModifiers()
;通过
Method
实例可以调用某个对象的方法:Object invoke(Object instance, Object... parameters)
;通过设置
setAccessible(true)
来访问非public
方法;通过反射调用方法时,仍然遵循多态原则。
5),调用构造方法
我们通常使用new
操作符创建新的实例:
Person p = new Person();
如果通过反射来创建新的实例,可以调用Class提供的newInstance()方法:
Person p = Person.class.newInstance();
调用Class.newInstance()的局限是:它只能调用该类的public无参数构造方法。如果构造方法带有参数,或者不是public,就无法直接通过Class.newInstance()来调用。
为了调用任意的构造方法,Java的反射API提供了Constructor对象,它包含一个构造方法的所有信息,可以创建一个实例。Constructor对象和Method非常类似,不同之处仅在于它是一个构造方法,并且,调用结果总是返回实例:
public class Mian_reflection_constructor {
public static void main(String[] args) throws Exception{
// 获取构造方法Integer(int):
Constructor cons1 = Integer.class.getConstructor(int.class);
// 调用构造方法:
Integer i = (Integer)cons1.newInstance(123456);
System.out.println(i); // 123456
// 获取构造方法Integer(String)
Constructor cons2 = Integer.class.getConstructor(String.class);
Integer n = (Integer)cons2.newInstance("098765");
System.out.println(n); // 98765
}
}
通过Class实例获取Constructor的方法如下:
-
getConstructor(Class...)
:获取某个public
的Constructor
; -
getDeclaredConstructor(Class...)
:获取某个Constructor
; -
getConstructors()
:获取所有public
的Constructor
; -
getDeclaredConstructors()
:获取所有Constructor
。
注意Constructor
总是当前类定义的构造方法,和父类无关,因此不存在多态的问题。
调用非public
的Constructor
时,必须首先通过setAccessible(true)
设置允许访问。setAccessible(true)
可能会失败。
1),小结
Constructor
对象封装了构造方法的所有信息;
通过Class
实例的方法可以获取Constructor
实例:getConstructor()
,getConstructors()
,getDeclaredConstructor()
,getDeclaredConstructors()
;
通过Constructor
实例可以创建一个实例对象:newInstance(Object... parameters)
; 通过设置setAccessible(true)
来访问非public
构造方法。
6),获取继承关系
当我们获取到某个Class
对象时,实际上就获取到了一个类的类型:
Class cls = String.class; // 获取到String的Class
还可以用实例的getClass()
方法获取:
String s = "";
Class cls = s.getClass(); // s是String,因此获取到String的Class
最后一种获取Class
的方法是通过Class.forName("")
,传入Class
的完整类名获取:
Class s = Class.forName("java.lang.String");
这三种方式获取的Class
实例都是同一个实例,因为JVM对每个加载的Class
只创建一个Class
实例来表示它的类型。
1),获取父类的Class
有了Class
实例,我们还可以获取它的父类的Class
:
public class Mian_reflection_superclass {
public static void main(String[] args) throws Exception{
Class cls = Integer.class;
Class c1 = cls.getSuperclass();
System.out.println(c1); // class java.lang.Number
Class o = c1.getSuperclass();
System.out.println(o); // class java.lang.Object
System.out.println(o.getSuperclass()); // null
}
}
运行上述代码,可以看到,Integer
的父类类型是Number
,Number
的父类是Object
,Object
的父类是null
。除Object
外,其他任何非interface
的Class
都必定存在一个父类类型。
2),获取interface
由于一个类可能实现一个或多个接口,通过Class
我们就可以查询到实现的接口类型。例如,查询Integer
实现的接口:
public class Main {
public static void main(String[] args) throws Exception {
Class s = Integer.class;
Class[] is = s.getInterfaces();
for (Class i : is) {
System.out.println(i);
}
}
}