其实所有的死锁最深层的原因就是一个:资源竞争
表现一:
一个用户A 访问表A(锁住了表A),然后又访问表B,另一个用户B 访问表B(锁住了表B),然后企图访问表A,这时用户A由于用户B已经锁住表B,它必须等待用户B释放表B,才能继续,好了他老人家就只好老老实实在这等了,同样用户B要等用户A释放表A才能继续这就死锁了。
解决方法:
这种死锁是由于你的程序的BUG产生的,除了调整你的程序的逻辑别无他法
仔细分析你程序的逻辑:
1:尽量避免同时锁定两个资源
2: 必须同时锁定两个资源时,要保证在任何时刻都应该按照相同的顺序来锁定资源.
表现二:
用户A读一条纪录,然后修改该条纪录。这是用户B修改该条纪录,这里用户A的事务里锁的性质由共享锁企图上升到独占锁(for update),而用户B里的独占锁由于A有共享锁存在所以必须等A释放掉共享锁,而A由于B的独占锁而无法上升的独占锁也就不可能释放共享锁,于是出现了死锁。
这种死锁比较隐蔽,但其实在稍大点的项目中经常发生。
解决方法:
让用户A的事务(即先读后写类型的操作),在select 时就是用Update lock
语法如下:
select * from table1 with(updlock) where ....
==============================================================================
在联机事务处理(OLTP)的数据库应用系统中,多用户、多任务的并发性是系统最重要的技术指标之一。为了提高并发性,目前大部分RDBMS都采用加锁技术。然而由于现实环境的复杂性,使用加锁技术又不可避免地产生了死锁问题。因此如何合理有效地使用加锁技术,最小化死锁是开发联机事务处理系统的关键。
死锁产生的原因
在联机事务处理系统中,造成死机主要有两方面原因。一方面,由于多用户、多任务的并发性和事务的完整性要求,当多个事务处理对多个资源同时访问时,若双方已锁定一部分资源但也都需要对方已锁定的资源时,无法在有限的时间内完全获得所需的资源,就会处于无限的等待状态,从而造成其对资源需求的死锁。
另一方面,数据库本身加锁机制的实现方法不同,各数据库系统也会产生其特殊的死锁情况。如在Sybase SQL中,最小锁为2K一页的加锁方法,而非行级锁。如果某张表的记录数少且记录的长度较短(即记录密度高,如应用系统中的系统配置表或系统参数表就属于此类表),被访问的频率高,就容易在该页上产生死锁。
几种死锁情况及解决方法
清算应用系统中,容易发生死锁的几种情况如下:
● 不同的存储过程、触发器、动态SQL语句段按照不同的顺序同时访问多张表;
● 在交换期间添加记录频繁的表,但在该表上使用了非群集索引(non-clustered);
● 表中的记录少,且单条记录较短,被访问的频率较高;
● 整张表被访问的频率高(如代码对照表的查询等)。
以上死锁情况的对应处理方法如下:
● 在系统实现时应规定所有存储过程、触发器、动态SQL语句段中,对多张表的操作总是使用同一顺序。如:有两个存储过程proc1、proc2,都需要访问三张表zltab、z2tab和z3tab,如果proc1按照zltab、z2tab和z3tab的顺序进行访问,那么,proc2也应该按照以上顺序访问这三张表。
● 对在交换期间添加记录频繁的表,使用群集索引(clustered),以减少多个用户添加记录到该表的最后一页上,在表尾产生热点,造成死锁。这类表多为往来账的流水表,其特点是在交换期间需要在表尾追加大量的记录,并且对已添加的记录不做或较少做删除操作。
● 对单张表中记录数不太多,且在交换期间select或updata较频繁的表可使用设置每页最大行的办法,减少数据在表中存放的密度,模拟行级锁,减少在该表上死锁情况的发生。这类表多为信息繁杂且记录条数少的表。
如:系统配置表或系统参数表。在定义该表时添加如下语句:
with max_rows_per_page=1
● 在存储过程、触发器、动态SQL语句段中,若对某些整张表select操作较频繁,则可能在该表上与其他访问该表的用户产生死锁。对于检查账号是否存在,但被检查的字段在检查期间不会被更新等非关键语句,可以采用在select命令中使用at isolation read uncommitted子句的方法解决。该方法实际上降低了select语句对整张表的锁级别,提高了其他用户对该表操作的并发性。在系统高负荷运行时,该方法的效果尤为显著。
例如:
select * from titles at isolation read uncommitted
● 对流水号一类的顺序数生成器字段,可以先执行updata流水号字段+1,然后再执行select获取流水号的方法进行操作。
小结
笔者对同城清算系统进行压力测试时,分别对采用上述优化方法和不采用优化方法的两套系统进行测试。在其他条件相同的情况下,相同业务笔数、相同时间内,死锁发生的情况如下:
采用优化方法的系统: 0次/万笔业务;
不采用优化方法的系统:50~200次/万笔业务。
所以,使用上述优化方法后,特别是在系统高负荷运行时效果尤为显著。总之,在设计、开发数据库应用系统,尤其是OLTP系统时,应该根据应用系统的具体情况,依据上述原则对系统分别优化,为开发一套高效、可靠的应用系统打下良好的基础。
========================================================================
--查看数据库里阻塞和死锁情况
if exists (select * from dbo.sysobjects where id = object_id(N [dbo].[sp_who_lock] ) and OBJECTPROPERTY(id, N IsProcedure ) = 1)
drop procedure [dbo].[sp_who_lock]
GO
/***************************************************************************
// 创建 : fengyu 邮件 : maggiefengyu@tom.com 日期 :2004-04-30
// 修改 : 从http://www.csdn.net/develop/Read_Article.asp?id=26566学习到并改写
// 说明 : 查看数据库里阻塞和死锁情况
***************************************************************************/
use master
go
create procedure sp_who_lock
as
begin
declare @spid int,@bl int,
@intTransactionCountOnEntry int,
@intRowcount int,
@intCountProperties int,
@intCounter int
create table #tmp_lock_who (
id int identity(1,1),
spid smallint,
bl smallint)
IF @@ERROR<>0 RETURN @@ERROR
insert into #tmp_lock_who(spid,bl) select 0 ,blocked
from (select * from sysprocesses where blocked>0 ) a
where not exists(select * from (select * from sysprocesses where blocked>0 ) b
where a.blocked=spid)
union select spid,blocked from sysprocesses where blocked>0
IF @@ERROR<>0 RETURN @@ERROR
-- 找到临时表的记录数
select @intCountProperties = Count(*),@intCounter = 1
from #tmp_lock_who
IF @@ERROR<>0 RETURN @@ERROR
if @intCountProperties=0
select 现在没有阻塞和死锁信息 as message
-- 循环开始
while @intCounter <= @intCountProperties
begin
-- 取第一条记录
select @spid = spid,@bl = bl
from #tmp_lock_who where Id = @intCounter
begin
if @spid =0
select 引起数据库死锁的是: + CAST(@bl AS VARCHAR(10)) + 进程号,其执行的SQL语法如下
else
select 进程号SPID: + CAST(@spid AS VARCHAR(10))+ 被 + 进程号SPID: + CAST(@bl AS VARCHAR(10)) + 阻塞,其当前进程执行的SQL语法如下
DBCC INPUTBUFFER (@bl )
end
-- 循环指针下移
set @intCounter = @intCounter + 1
end
drop table #tmp_lock_who
return 0
end
====================================================
呵呵,解决死锁,光查出来没有多大用处,我原来也是用这个存储过程来清理死锁的
我解决死锁的方式主要用了:
1 优化索引
2 对所有的报表,非事务性的select 语句 在from 后都加了 with (nolock) 语句
3 对所有的事务性更新尽量使用相同的更新顺序来执行
现在已解决了死锁的问题,希望能对你有帮助
with (nolock)的用法很灵活 可以说只要有 from的地方都可以加 with (nolock) 标记来取消产生意象锁,这里 可以用在 delete update,select 以及 inner join 后面的from里,对整个系统的性能提高都很有帮助
将死锁减至最少即可。
. 按同一顺序访问对象。
. 避免事务中的用户交互。
. 保持事务简短并处于一个批处理中。
. 使用较低的隔离级别。
. 使用基于行版本控制的隔离级别。
. 将 READ_COMMITTED_SNAPSHOT 数据库选项设置为 ON,使得已提交读事务使用行版本控制。
. 使用快照隔离。
. 使用绑定连接。