一 、整体理解

LinkedList底层是一个双向链表;链表中的每个节点都可以向前后者向后追溯;

双向链表结构如下图所示:

java中的LinkedList扩容 java中linkedlist类用法_链表

有几个重要的概念需要注意:

first是双向链表的头结点,last是双向链表的尾节点;当链表中没有数据时,first和last节点都指向同一个节点,即null;

链表中的每个节点叫做node,每个node有prev属性和next属性

private static class Node<E> {
    E item;// 节点值
    Node<E> next; // 指向的下一个节点
    Node<E> prev; // 指向的前一个节点
    // 初始化参数顺序分别是:前一个节点、本身节点值、后一个节点
    Node(Node<E> prev, E element, Node<E> next) {
        this.item = element;
        this.next = next;
        this.prev = prev;
    }
}

二、源码分析

1 新增节点

新增或者追加节点时,可以选择追加到链表尾部,也可以追加到链表头部,其中:add方法默认是从尾部追加,addFirst默认是从头部开始追加;

add方法:默认从尾部进行追加:

public boolean add(E e) {
        linkLast(e);
        return true;
}
// 从尾部开始追加节点
void linkLast(E e) {
    // 把尾节点数据暂存
    final Node<E> l = last;
    // 新建新的节点,初始化入参含义:
    // l 是新节点的前一个节点,当前值是尾节点值
    // e 表示当前新增节点,当前新增节点后一个节点是 null
    final Node<E> newNode = new Node<>(l, e, null);
    // 新建节点追加到尾部
    last = newNode;
    //如果链表为空(l 是尾节点,尾节点为空,链表即空),头部和尾部是同一个节点,都是新建的节点
    if (l == null)
        first = newNode;
    //否则把前尾节点的下一个节点,指向当前尾节点。
    else
        l.next = newNode;
    //大小和版本更改
    size++;
    modCount++;
}

具体逻辑如下图所示:

java中的LinkedList扩容 java中linkedlist类用法_链表_02

 addFirst:默认从头部开始追加:

public void addFirst(E e) {
        linkFirst(e);
}
// 从头部追加
private void linkFirst(E e) {
    // 头节点赋值给临时变量
    final Node<E> f = first;
    // 新建节点,前一个节点指向null,e 是新建节点,f 是新建节点的下一个节点,目前值是头节点的值
    final Node<E> newNode = new Node<>(null, e, f);
    // 新建节点成为头节点
    first = newNode;
    // 头节点为空,就是链表为空,头尾节点是一个节点
    if (f == null)
        last = newNode;
    //上一个头节点的前一个节点指向当前节点
    else
        f.prev = newNode;
    size++;
    modCount++;
}

2 删除节点

与新增节点类似,可以从头部删除,也可以从尾部删除;删除操作会把节点的值,前后指向节点都置为null,方便GC回收;

//从头删除节点 f 是链表头节点
private E unlinkFirst(Node<E> f) {
    // 拿出头节点的值,作为方法的返回值
    final E element = f.item;
    // 拿出头节点的下一个节点
    final Node<E> next = f.next;
    //帮助 GC 回收头节点
    f.item = null;
    f.next = null;
    // 头节点的下一个节点成为头节点
    first = next;
    //如果 next 为空,表明链表为空
    if (next == null)
        last = null;
    //链表不为空,头节点的前一个节点指向 null
    else
        next.prev = null;
    //修改链表大小和版本
    size--;
    modCount++;
    return element;
}

从源代码上看出,链表的删除和新增非常简单,只需要修改下前后节点的指向即可,所以LinkedList新增和删除都非常快;

3 节点查询

// 根据链表索引位置查询节点
Node<E> node(int index) {
    // 如果 index 处于队列的前半部分,从头开始找,size >> 1 是 size 除以 2 的意思。
    if (index < (size >> 1)) {
        Node<E> x = first;
        // 直到 for 循环到 index 的前一个 node 停止
        for (int i = 0; i < index; i++)
            x = x.next;
        return x;
    } else {// 如果 index 处于队列的后半部分,从尾开始找
        Node<E> x = last;
        // 直到 for 循环到 index 的后一个 node 停止
        for (int i = size - 1; i > index; i--)
            x = x.prev;
        return x;
    }
}

从源码看出,LinkedList 并没有采取从头到尾的查询方法,而是通过简单二分法,即先分析索引位置是位于链表的前半部分还是后半部分,如果是前半部分,则从头部开始查找,反之亦反;链表查询速度较慢,因为要循环查找

4 迭代器

由于LinkedList 实现了双向的迭代访问,所以只支持从头到尾迭代的Iterator不行,此时就要适用java新增的ListIterator;

// 双向迭代器
private class ListItr implements ListIterator<E> {
    private Node<E> lastReturned;//上一次执行 next() 或者 previos() 方法时的节点位置
    private Node<E> next;//下一个节点
    private int nextIndex;//下一个节点的位置
    //expectedModCount:期望版本号;modCount:目前最新版本号
    private int expectedModCount = modCount;
    …………
}

 从头到尾方向的迭代:

// 判断还有没有下一个元素
public boolean hasNext() {
    return nextIndex < size;// 下一个节点的索引小于链表的大小,就有
}
// 取下一个元素
public E next() {
    //检查期望版本号有无发生变化
    checkForComodification();
    if (!hasNext())//再次检查
        throw new NoSuchElementException();
    // next 是当前节点,在上一次执行 next() 方法时被赋值的。
    // 第一次执行时,是在初始化迭代器的时候,next 被赋值的
    lastReturned = next;
    // next 是下一个节点了,为下次迭代做准备
    next = next.next;
    nextIndex++;
    return lastReturned.item;
}

从尾到头方向的迭代:

// 如果上次节点索引位置大于 0,就还有节点可以迭代
public boolean hasPrevious() {
    return nextIndex > 0;
}
// 取前一个节点
public E previous() {
    checkForComodification();
    if (!hasPrevious())
        throw new NoSuchElementException();
    // next 为空场景:1:说明是第一次迭代,取尾节点(last);2:上一次操作把尾节点删除掉了
    // next 不为空场景:说明已经发生过迭代了,直接取前一个节点即可(next.prev)
    lastReturned = next = (next == null) ? last : next.prev;
    // 索引位置变化
    nextIndex--;
    return lastReturned.item;
}

使用迭代器删除元素:

public void remove() {
    checkForComodification();
    // lastReturned 是本次迭代需要删除的值,分以下空和非空两种情况:
    // lastReturned 为空,说明调用者没有主动执行过 next() 或者 previos(),直接报错
    // lastReturned 不为空,是在上次执行 next() 或者 previos()方法时赋的值
    if (lastReturned == null)
        throw new IllegalStateException();
    Node<E> lastNext = lastReturned.next;
    //删除当前节点
    unlink(lastReturned);
    // next == lastReturned 的场景分析:从尾到头递归顺序,并且是第一次迭代,并且要删除最后一个元素的情况下
    // 这种情况下,previous() 方法里面设置了 lastReturned = next = last,所以 next 和 lastReturned会相等
    if (next == lastReturned)
        // 这时候 lastReturned 是尾节点,lastNext 是 null,所以 next 也是 null,这样在 previous() 执行时,发现 next 是 null,就会把尾节点赋值给 next
        next = lastNext;
    else
        nextIndex--;
    lastReturned = null;
    expectedModCount++;
}