线程池Executor实现原理

  • 1、实现多线程的几种方式
  • 1、继承Thread
  • 2、实现Runnable
  • 3、用线程池
  • 2、run和start方法的区别
  • 3、用多线程运行十万次需要多久的时间
  • 1、自己创建多线程来执行
  • 2、使用线程池来执行
  • 4、创建Executor的三种方式与区别
  • 区别
  • 5、按照上述自定义的ThreadPoolExecutor,为什么当执行到第31次任务时会触发拒绝策略?
  • 6、执行优先级
  • 7、为什么线程池执行速度快
  • 8、线程复用
  • 总结


1、实现多线程的几种方式

1、继承Thread

public class ThreadDemo extends Thread {
    private int i;
    public ThreadDemo(int i){
        this.i = i;
    }

    @Override
    public void run() {
        System.out.println(Thread.currentThread().getName() + "--" + i);
    }
}

2、实现Runnable

public class ThreadDemo implements Runnable {
    private int i;
    public ThreadDemo(int i){
        this.i = i;
    }

    @Override
    public void run() {
        System.out.println(Thread.currentThread().getName() + "--" + i);
    }
}

3、用线程池

public class Test {
    public static void main(String[] args) {
        ExecutorService executorService1 = Executors.newFixedThreadPool(10);
        ExecutorService executorService2 = Executors.newCachedThreadPool();
        ExecutorService executorService3 = Executors.newSingleThreadExecutor();

        for (int i = 0; i < 100; i++) {
            executorService1.execute(new ThreadDemo(i));
        }
        executorService1.shutdown();
    }
}

2、run和start方法的区别

new ThreadDemo(0).run();    //方法级别的调用
        new ThreadDemo(0).start();  //启动多线程

3、用多线程运行十万次需要多久的时间

1、自己创建多线程来执行

public static void main(String[] args) throws InterruptedException {
        long start = System.currentTimeMillis();
        Random random = new Random();
        List<Integer> list = new ArrayList<>();
        for (int i = 0; i < 100000; i++) {
            Thread thread = new Thread(()->{
                list.add(random.nextInt());
            });
            thread.start();
            thread.join();
        }
        System.out.println("时间:" + (System.currentTimeMillis() - start));
        System.out.println("大小:" + list.size());
    }

时间:28037
大小:100000

2、使用线程池来执行

public static void main(String[] args) throws InterruptedException {
        long start = System.currentTimeMillis();
        Random random = new Random();
        List<Integer> list = new ArrayList<>();
        ExecutorService executorService = Executors.newSingleThreadExecutor();
        for (int i = 0; i < 100000; i++) {
            executorService.execute(new Thread(()->{
                list.add(random.nextInt());
            }));
        }
        executorService.shutdown();
        executorService.awaitTermination(1, TimeUnit.DAYS);
        System.out.println("时间:" + (System.currentTimeMillis() - start));
        System.out.println("大小:" + list.size());
    }

时间:317
大小:100000

总结:使用线程池的效率会高很多

4、创建Executor的三种方式与区别

public class MyTask implements Runnable {
    private int i;
    public MyTask(int i) {
        this.i = i;
    }

    @Override
    public void run() {
        System.out.println(Thread.currentThread().getName() + "---" + i);
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

public class Test {
    public static void main(String[] args) {
        ExecutorService executorService1 = Executors.newFixedThreadPool(10);  //慢
        ExecutorService executorService2 = Executors.newCachedThreadPool();	  //快
        ExecutorService executorService3 = Executors.newSingleThreadExecutor();	//最慢

        for (int i = 0; i < 100; i++) {
            executorService1.execute(new MyTask(i));
        }
        executorService1.shutdown();
    }
}

执行速度:executorService2 > executorService1 > executorService3

区别

java 线程池上下文丢失 java线程池底层实现_java 线程池上下文丢失

ExecutorService executorService1 = Executors.newFixedThreadPool(10);  //慢
/**
     * Creates a thread pool that reuses a fixed number of threads
     * operating off a shared unbounded queue.  At any point, at most
     * {@code nThreads} threads will be active processing tasks.
     * If additional tasks are submitted when all threads are active,
     * they will wait in the queue until a thread is available.
     * If any thread terminates due to a failure during execution
     * prior to shutdown, a new one will take its place if needed to
     * execute subsequent tasks.  The threads in the pool will exist
     * until it is explicitly {@link ExecutorService#shutdown shutdown}.
     *
     * @param nThreads the number of threads in the pool
     * @return the newly created thread pool
     * @throws IllegalArgumentException if {@code nThreads <= 0}
     */
    public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());
    }


    /**
     * Creates a {@code LinkedBlockingQueue} with a capacity of
     * {@link Integer#MAX_VALUE}.
     */
    public LinkedBlockingQueue() {
        this(Integer.MAX_VALUE);
    }
ExecutorService executorService2 = Executors.newCachedThreadPool();	  //快
/**
     * Creates a thread pool that creates new threads as needed, but
     * will reuse previously constructed threads when they are
     * available.  These pools will typically improve the performance
     * of programs that execute many short-lived asynchronous tasks.
     * Calls to {@code execute} will reuse previously constructed
     * threads if available. If no existing thread is available, a new
     * thread will be created and added to the pool. Threads that have
     * not been used for sixty seconds are terminated and removed from
     * the cache. Thus, a pool that remains idle for long enough will
     * not consume any resources. Note that pools with similar
     * properties but different details (for example, timeout parameters)
     * may be created using {@link ThreadPoolExecutor} constructors.
     *
     * @return the newly created thread pool
     */
    public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }
ExecutorService executorService3 = Executors.newSingleThreadExecutor();	//最慢
/**
     * Creates an Executor that uses a single worker thread operating
     * off an unbounded queue. (Note however that if this single
     * thread terminates due to a failure during execution prior to
     * shutdown, a new one will take its place if needed to execute
     * subsequent tasks.)  Tasks are guaranteed to execute
     * sequentially, and no more than one task will be active at any
     * given time. Unlike the otherwise equivalent
     * {@code newFixedThreadPool(1)} the returned executor is
     * guaranteed not to be reconfigurable to use additional threads.
     *
     * @return the newly created single-threaded Executor
     */
    public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
    }

    /**
     * Creates a {@code LinkedBlockingQueue} with a capacity of
     * {@link Integer#MAX_VALUE}.
     */
    public LinkedBlockingQueue() {
        this(Integer.MAX_VALUE);
    }
/**
     * Creates a new {@code ThreadPoolExecutor} with the given initial
     * parameters and default thread factory and rejected execution handler.
     * It may be more convenient to use one of the {@link Executors} factory
     * methods instead of this general purpose constructor.
     *
     * @param corePoolSize the number of threads to keep in the pool, even
     *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
     * @param maximumPoolSize the maximum number of threads to allow in the
     *        pool
     * @param keepAliveTime when the number of threads is greater than
     *        the core, this is the maximum time that excess idle threads
     *        will wait for new tasks before terminating.
     * @param unit the time unit for the {@code keepAliveTime} argument
     * @param workQueue the queue to use for holding tasks before they are
     *        executed.  This queue will hold only the {@code Runnable}
     *        tasks submitted by the {@code execute} method.
     * @throws IllegalArgumentException if one of the following holds:<br>
     *         {@code corePoolSize < 0}<br>
     *         {@code keepAliveTime < 0}<br>
     *         {@code maximumPoolSize <= 0}<br>
     *         {@code maximumPoolSize < corePoolSize}
     * @throws NullPointerException if {@code workQueue} is null
     */
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             Executors.defaultThreadFactory(), defaultHandler);
    }

	 public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler)

这三种方式的创建最终都是创建ThreadPoolExecutor对象,上面的三种方式都不推荐使用,第一种和第三种创建的的队列太大很容易造成OOM异常,第二种线程池太大,很容易造成CPU负载100%。
推荐使用自定义ThreadPoolExecutor,根据自己的需求灵活配置线程池

ExecutorService executorService = new ThreadPoolExecutor(10, 20, 10L, TimeUnit.MILLISECONDS, new ArrayBlockingQueue<Runnable>(10));

5、按照上述自定义的ThreadPoolExecutor,为什么当执行到第31次任务时会触发拒绝策略?

java 线程池上下文丢失 java线程池底层实现_线程池_02

public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            reject(command);
    }

java 线程池上下文丢失 java线程池底层实现_多线程_03


这是因为提交任务的优先级是:

1、先判断核心线程数是否有空闲,如果有则由核心线程来执行;

2、如果核心线程满了,则放在任务队列里;

3、如果任务队列满了,则由非核心线程数来执行;

4、如果线程数达到最大时,则会触发拒绝策略

6、执行优先级

java 线程池上下文丢失 java线程池底层实现_java 线程池上下文丢失_04


执行优先级:

1、先执行核心线程的任务

2、再执行非核心线程的任务

3、最后再执行队列里面的任务

7、为什么线程池执行速度快

private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            w = new Worker(firstTask);		//创建任务
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    t.start();		//启动任务线程
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }
Worker(Runnable firstTask) {
            setState(-1); // inhibit interrupts until runWorker
            this.firstTask = firstTask;
            this.thread = getThreadFactory().newThread(this);
        }

        /** Delegates main run loop to outer runWorker  */
        public void run() {
            runWorker(this);
        }

    final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            while (task != null || (task = getTask()) != null) {
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();		//最后是调用run方法来执行的
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }

主要是因为线程池底层最终是来调用run方法来执行,而不是start方法,减少了线程的开销,大大提高了效率

8、线程复用

/**
     * Performs cleanup and bookkeeping for a dying worker. Called
     * only from worker threads. Unless completedAbruptly is set,
     * assumes that workerCount has already been adjusted to account
     * for exit.  This method removes thread from worker set, and
     * possibly terminates the pool or replaces the worker if either
     * it exited due to user task exception or if fewer than
     * corePoolSize workers are running or queue is non-empty but
     * there are no workers.
     *
     * @param w the worker
     * @param completedAbruptly if the worker died due to user exception
     */
    private void processWorkerExit(Worker w, boolean completedAbruptly) {
        if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
            decrementWorkerCount();

        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            completedTaskCount += w.completedTasks;
            workers.remove(w);
        } finally {
            mainLock.unlock();
        }

        tryTerminate();

        int c = ctl.get();
        if (runStateLessThan(c, STOP)) {	//当线程还在存活时间内,则继续使用线程来处理任务,这就是线程复用
            if (!completedAbruptly) {
                int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
                if (min == 0 && ! workQueue.isEmpty())
                    min = 1;
                if (workerCountOf(c) >= min)
                    return; // replacement not needed
            }
            addWorker(null, false);		//继续来处理任务
        }
    }

总结

java 线程池上下文丢失 java线程池底层实现_java 线程池上下文丢失_05


java 线程池上下文丢失 java线程池底层实现_线程池_06