group(
*inputs,
**kwargs
)
- 创建一个操作,该操作可以对 TensorFlow 的多个操作进行分组。
当这个操作完成后,所有 input 中的所有 ops 都已完成。这个操作没有输出。
另请参见 tuple 和 control_dependencies 获得更多信息。
参数:
input:需要进行分组的零个或多个张量。
kwargs:构造 NodeDef 时要传递的可选参数。
name:此操作的名称(可选)。
返回值:
该函数返回执行其所有输入的操作。
可能引发的异常:
- ValueError:如果提供了一个未知的关键字参数。
import tensorflow as tf
tag =tf.reduce_any([True])
b = tf.Variable(tf.random_normal([5,3],stddev=0.35),name="weights")
C = b
#init = tf.initialize_all_variables()
sess = tf.Session()
#sess.run(init)
# print(sess.run(b.initialized_value()))
with tf.control_dependencies([tag]):
do_updates = tf.group(
tf.reduce_sum(input_tensor=b),
b.assign(b+10),
C)
init = tf.initialize_all_variables()
sess.run(init)
print(sess.run(C))
print(sess.run([do_updates]))
print(sess.run(tag))
print(sess.run(b))
print(sess.run(C))
输出
[[ 0.42285722 0.46158823 -0.26109645]
[-0.64646924 0.05288799 -0.2152937 ]
[-0.0093157 0.52074057 -0.47927105]
[ 0.5385346 0.05081145 0.04212087]
[ 0.40977108 0.15353793 0.05755007]]
[None]
True
[[10.422857 10.461588 9.738904 ]
[ 9.353531 10.052888 9.784706 ]
[ 9.9906845 10.5207405 9.520729 ]
[10.538534 10.050812 10.042121 ]
[10.409771 10.153538 10.05755 ]]
[[10.422857 10.461588 9.738904 ]
[ 9.353531 10.052888 9.784706 ]
[ 9.9906845 10.5207405 9.520729 ]
[10.538534 10.050812 10.042121 ]
[10.409771 10.153538 10.05755 ]]
import tensorflow as tf
tag =tf.reduce_any([True])
b = tf.Variable(tf.random_normal([5,3],stddev=0.35),name="weights")
C = b
#init = tf.initialize_all_variables()
sess = tf.Session()
#sess.run(init)
# print(sess.run(b.initialized_value()))
with tf.control_dependencies([tag]):
do_updates = tf.group(
tf.reduce_sum(input_tensor=b),
b.assign(b+10),
C)
init = tf.initialize_all_variables()
sess.run(init)
print(sess.run(C))
# print(sess.run([do_updates]))
print(sess.run(tag))
print(sess.run(b))
print(sess.run(C))
输出
[[ 0.5533742 0.19960515 0.44480166]
[-0.23665977 -0.29964206 -0.17953995]
[-0.40328383 0.05090697 -0.67651725]
[-0.02874281 -0.15773363 -0.12723291]
[-0.10975635 -0.04863227 0.1665113 ]]
True
[[ 0.5533742 0.19960515 0.44480166]
[-0.23665977 -0.29964206 -0.17953995]
[-0.40328383 0.05090697 -0.67651725]
[-0.02874281 -0.15773363 -0.12723291]
[-0.10975635 -0.04863227 0.1665113 ]]
[[ 0.5533742 0.19960515 0.44480166]
[-0.23665977 -0.29964206 -0.17953995]
[-0.40328383 0.05090697 -0.67651725]
[-0.02874281 -0.15773363 -0.12723291]
[-0.10975635 -0.04863227 0.1665113 ]]
1. difference between tf.group and tf.control_dependencies
If you look at the graphdef, the c=tf.group(a, b)
produces the same graph as
with tf.control_dependencies([a, b]):
c = tf.no_op()
There's no specific order in which ops will run, TensorFlow tries to execute operations as soon as it can (i.e. in parallel).
2. difference between tf.group and tf.control_dependencies
As you can see from Yaroslav's answer, the main difference is that tf.control_depenencies
adds no ops (nodes) to the computation graph, while tf.group
creates and returns a new op (node).
In addition, if inputs
belong to multiple devices, tf.group
will insert an intermediate layer between the node it returns and the inputs
. That layer will contain one node per device, so that the dependencies are organized by device. This reduces the cross-device data flow.
So if your dependencies are on multiple devices, tf.group
adds some optimization.
On the other hand, tf.control_dependencies
has a nice behavior with nesting. The inner context will add dependencies to the union of all the ops in the outer contexts.
2. tf.control_dependencies()
tf.control_dependencies()
设计是用来控制计算流图的,给图中的某些计算指定顺序。比如:我们想要获取参数更新后的值,那么我们可以这么组织我们的代码。
opt = tf.train.Optimizer().minize(loss)
with tf.control_dependencies([opt]):
updated_weight = tf.identity(weight)
with tf.Session() as sess:
tf.global_variables_initializer().run()
sess.run(updated_weight, feed_dict={...}) # 这样每次得到的都是更新后的weight
关于tf.control_dependencies的具体用法,請移步官网https://www.tensorflow.org/api_docs/python/tf/Graph#control_dependencies,总结一句话就是,在执行某些op,tensor
之前,某些op,tensor
得首先被运行。
下面说明两种 control_dependencies 不 work 的情况
下面有两种情况,control_dependencies不work,其实并不是它真的不work,而是我们的使用方法有问题。
第一种情况:
import tensorflow as tf
w = tf.Variable(1.0)
ema = tf.train.ExponentialMovingAverage(0.9)
update = tf.assign_add(w, 1.0)
ema_op = ema.apply([update])
with tf.control_dependencies([ema_op]):
ema_val = ema.average(update)
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(3):
print(sess.run([ema_val]))
也许你会觉得,在我们 sess.run([ema_val])
, ema_op
都会被先执行,然后再计算ema_val
,实际情况并不是这样,为什么?
有兴趣的可以看一下源码,就会发现 ema.average(update)
不是一个 op
,它只是从ema
对象的一个字典中取出键对应的 tensor
而已,然后赋值给ema_val
。这个 tensor
是由一个在 tf.control_dependencies([ema_op])
外部的一个 op
计算得来的,所以 control_dependencies
会失效。解决方法也很简单,看代码:
import tensorflow as tf
w = tf.Variable(1.0)
ema = tf.train.ExponentialMovingAverage(0.9)
update = tf.assign_add(w, 1.0)
ema_op = ema.apply([update])
with tf.control_dependencies([ema_op]):
ema_val = tf.identity(ema.average(update)) #一个identity搞定
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(3):
print(sess.run([ema_val]))
第二种情况: 这个情况一般不会碰到,这是我在测试 control_dependencies
发现的
import tensorflow as tf
w = tf.Variable(1.0)
ema = tf.train.ExponentialMovingAverage(0.9)
update = tf.assign_add(w, 1.0)
ema_op = ema.apply([update])
with tf.control_dependencies([ema_op]):
w1 = tf.Variable(2.0)
ema_val = ema.average(update)
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(3):
print(sess.run([ema_val, w1]))
这种情况下,control_dependencies
也不 work。读取 w1
的值并不会触发 ema_op
, 原因请看代码:
#这段代码出现在Variable类定义文件中第287行,
# 在创建Varible时,tensorflow是移除了dependencies了的
#所以会出现 control 不住的情况
with ops.control_dependencies(None):