悲观锁

悲观锁(Pessimistic Lock),顾名思义,就是很悲观,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它拿到锁。

悲观锁:假定会发生并发冲突,屏蔽一切可能违反数据完整性的操作。

Java synchronized 就属于悲观锁的一种实现,每次线程要修改数据时都先获得锁,保证同一时刻只有一个线程能操作数据,其他线程则会被block。

乐观锁

乐观锁(Optimistic Lock),顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在提交更新的时候会判断一下在此期间别人有没有去更新这个数据。乐观锁适用于读多写少的应用场景,这样可以提高吞吐量。

乐观锁:假设不会发生并发冲突,只在提交操作时检查是否违反数据完整性。

乐观锁一般来说有以下2种方式:

  1. 使用数据版本(Version)记录机制实现,这是乐观锁最常用的一种实现方式。何谓数据版本?即为数据增加一个版本标识,一般是通过为数据库表增加一个数字类型的 “version” 字段来实现。当读取数据时,将version字段的值一同读出,数据每更新一次,对此version值加一。当我们提交更新的时候,判断数据库表对应记录的当前版本信息与第一次取出来的version值进行比对,如果数据库表当前版本号与第一次取出来的version值相等,则予以更新,否则认为是过期数据。
  2. 使用时间戳(timestamp)。乐观锁定的第二种实现方式和第一种差不多,同样是在需要乐观锁控制的table中增加一个字段,名称无所谓,字段类型使用时间戳(timestamp), 和上面的version类似,也是在更新提交的时候检查当前数据库中数据的时间戳和自己更新前取到的时间戳进行对比,如果一致则OK,否则就是版本冲突。

Java JUC中的atomic包就是乐观锁的一种实现,AtomicInteger 通过CAS(Compare And Set)操作实现线程安全的自增。

MySQL隐式和显示锁定

MySQL InnoDB采用的是两阶段锁定协议(two-phase locking protocol)。在事务执行过程中,随时都可以执行锁定,锁只有在执行 COMMIT或者ROLLBACK的时候才会释放,并且所有的锁是在同一时刻被释放。前面描述的锁定都是隐式锁定,InnoDB会根据事务隔离级别在需要的时候自动加锁。

另外,InnoDB也支持通过特定的语句进行显示锁定,这些语句不属于SQL规范:

  • SELECT ... LOCK IN SHARE MODE
  • SELECT ... FOR UPDATE

实战

接下来,我们通过一个具体案例来进行分析:考虑电商系统中的下单流程,商品的库存量是固定的,如何保证商品数量不超卖? 其实需要保证数据一致性:某个人点击秒杀后系统中查出来的库存量和实际扣减库存时库存量的一致性就可以。

假设,MySQL数据库中商品库存表tb_product_stock 结构定义如下:




java代码乐观锁 java mysql 乐观锁_mysql 锁


对应的POJO类:


java代码乐观锁 java mysql 乐观锁_乐观锁_02


不考虑并发的情况下,更新库存代码如下:


java代码乐观锁 java mysql 乐观锁_mysql如何判断当前扫描的是第一条记录_03


多线程并发情况下,会存在超卖的可能。

悲观锁


java代码乐观锁 java mysql 乐观锁_加锁_04


乐观锁


java代码乐观锁 java mysql 乐观锁_乐观锁_05


使用乐观锁更新库存的时候不加锁,当提交更新时需要判断数据是否已经被修改(AND number=#{number}),只有在 number等于上一次查询到的number时 才提交更新。

** 注意** :UPDATE 语句的WHERE 条件字句上需要建索引

乐观锁与悲观锁的区别

乐观锁的思路一般是表中增加版本字段,更新时where语句中增加版本的判断,算是一种CAS(Compare And Swep)操作,商品库存场景中number起到了版本控制(相当于version)的作用( AND number=#{number})。

悲观锁之所以是悲观,在于他认为本次操作会发生并发冲突,所以一开始就对商品加上锁(SELECT ... FOR UPDATE),然后就可以安心的做判断和更新,因为这时候不会有别人更新这条商品库存。

小结

这里我们通过 MySQL 乐观锁与悲观锁 解决并发更新库存的问题,当然还有其它解决方案,例如使用 分布式锁。目前常见分布式锁实现有两种:基于Redis和基于Zookeeper,基于这两种 业界也有开源的解决方案,例如 Redisson Distributed locks 、 Apache Curator Shared Lock ,这里就不细说,网上Google 一下就有很多资料。

索引与锁

MySQL 为我们提供了行锁、表锁、页锁三种级别的锁,其中表锁开销小,加锁快;不会出现死锁;锁定力度大,发生锁冲突概率高,并发度最低。行锁开销大,加锁慢;会出现死锁;锁定粒度小,发生锁冲突的概率低,并发度高;页锁开销和加锁速度介于表锁和行锁之间;会出现死锁;锁定粒度介于表锁和行锁之间,并发度一般。每个存储引擎都可以有自己的锁策略,例如 MyISAM 引擎仅支持表级锁,而 InnoDB 引擎除了支持表级锁外,也支持行级锁(默认)。


java代码乐观锁 java mysql 乐观锁_乐观锁_06


InnoDB 行锁是通过给索引上的索引项加锁来实现的,这一点 MySQL 与 Oracle 不同,后者是通过在数据块中对相应数据行加锁来实现的。InnoDB 这种行锁实现特点意味着:只有通过索引条件检索数据,InnoDB 才使用行级锁,否则,InnoDB 将使用表锁,同样地,当 for update 的记录不存在会导致锁住全表。当表有多个索引的时候,不同的事务可以使用不同的索引锁定不同的行,另外,不论是使用主键索引、唯一索引或普通索引,InnoDB 都会使用行锁来对数据加锁。 InnoDB 的加锁过程比较复杂,将所有扫描到的记录都加锁,范围查询会加间隙锁,然后加锁过程按照两阶段锁 2PL 来实现,也就是先加锁,然后所有的锁在事物提交的时候释放。加锁的策略会和数据库的隔离级别有关,在默认的可重复读的隔离级别的情况下,加锁的流程还会和查询条件中是否包含索引,是主键索引还是普通索引,是否是唯一索引等有关。 譬如对于 select * from o_order where order_sn = '201912102322' for update; 这条 SQL 语句,在不同的索引情况下其加锁策略也不一致:


java代码乐观锁 java mysql 乐观锁_java代码乐观锁_07


  • order_sn 是主键索引,这种情况将在主键索引上的 order_sn = 201912102322 这条记录上加排他锁。
  • order_sn 是普通索引,并且是唯一索引,将会对普通索引上对应的一条记录加排他锁,对主键索引上对应的记录加排他锁。
  • order_sn 是普通索引,并且不是唯一索引,将会对普通索引上 order_sn = 201912102322 一条或者多条记录加锁,并且对这些记录对应的主键索引上的记录加锁。这里除了加上行锁外,还会加上间隙锁,防止其他事务插入 order_sn = 201912102322 的记录,然而如果是唯一索引就不需要间隙锁,行锁就可以。
  • order_sn 上没有索引,innoDB 将会在主键索引上全表扫描,这里并没有加表锁,而是将所有的记录都会加上行级排他锁,而实际上 innoDB 内部做了优化,当扫描到一行记录后发现不匹配就会把锁给释放,当然这个违背了 2PL 原则在事务提交的时候释放。这里除了对记录进行加锁,还会对每两个记录之间的间隙加锁,所以最终将会保存所有的间隙锁和 order_sn = 201912102322 的行锁。
  • order_sn = 201912102322 这条记录不存在的情况下,如果 order_sn 是主键索引,则会加一个间隙锁,而这个间隙是主键索引中 order_sn 小于 201912102322 的第一条记录到大于 201912102322 的第一条记录。试想一下如果不加间隙锁,如果其他事物插入了一条 order_sn = 201912102322 的记录,由于 select for update 是当前读,即使上面那个事物没有提交,如果在该事物中重新查询一次就会发生幻读。
  • 如果没有索引,则对扫描到的所有记录和间隙都加锁,如果不匹配行锁将会释放只剩下间隙锁。回忆一下上面讲的数据页的结果中又一个最大记录和最小记录,Infimum 和 Supremum Record,这两个记录在加间隙锁的时候就会用到。