原理

如果之前了解过信号处理,就会知道最直接的方法是计算图片的快速傅里叶变换,然后查看高低频分布。如果图片有少量的高频成分,那么该图片就可以被认为是模糊的。然而,区分高频量多少的具体阈值却是十分困难的,不恰当的阈值将会导致极差的结果。

我们期望的是一个单一的浮点数就可以表示图片的清晰度。 Pech-Pacheco 在 2000 年模式识别国际会议提出将图片中某一通道(一般用灰度值)通过拉普拉斯掩模做卷积运算,然后计算标准差,出来的值就可以代表图片清晰度。

这种方法凑效的原因就在于拉普拉斯算子定义本身。它被用来测量图片的二阶导数,突出图片中强度快速变化的区域,和 Sobel 以及 Scharr 算子十分相似。并且,和以上算子一样,拉普拉斯算子也经常用于边缘检测。此外,此算法基于以下假设:如果图片具有较高方差,那么它就有较广的频响范围,代表着正常,聚焦准确的图片。但是如果图片具有有较小方差,那么它就有较窄的频响范围,意味着图片中的边缘数量很少。正如我们所知道的,图片越模糊,其边缘就越少。

有了代表清晰度的值,剩下的工作就是设定相应的阀值,如果某图片方差低于预先定义的阈值,那么该图片就可以被认为是模糊的,高于阈值,就不是模糊的。

实操

原理看起来比较复杂,涉及到很多信号啊图片处理的相关知识,下面我们来实操一下,直观感受下。

由于人生苦短,以及我个人是朋友圈第一 Python 吹子,我选择使用 Python 来实现,核心代码简单到令人发指:


import cv2
def getImageVar(imgPath):
image = (imgPath);
img2gray = (image, )
imageVar = (img2gray, ).var()
return imageVar


真是人生苦短啊,核心代码就三行,简单解释下。

import cv2 使用了一个著名的图像处理库 OpenCV,关于 OpenCV 的安装这里不多赘述,需要注意的是它依赖 numpy。

image = (imgPath) 使用 OpenCV 提供的方法读取图片。img2gray = (image, ) 转化为灰度图。如下图:



Python 图像检测模型 python图像清晰度检测_读取图片灰度值区间python

原图是这样的:



Python 图像检测模型 python图像清晰度检测_Python 图像检测模型_02

(img2gray, ) 对图片用 3x3 拉普拉斯算子做卷积,这里的 就是拉普拉斯算子。

原理部分说过,拉普拉斯算子经常用于边缘检测,所以这里经过拉普拉斯算子之后,留下的都是检测到的边缘。上图经过这步处理之后是这样的:



Python 图像检测模型 python图像清晰度检测_Python 图像检测模型_03

可以看到这里图片人物大致还是比较清晰的。

(img2gray, ).var() 计算出方差,并最后返回。

上面那张图按这个计算出来时 3170 多,这个就是最后我们用来判断清晰度的值。



Python 图像检测模型 python图像清晰度检测_python sobel算子_04

可以再找一张看看:

原图:



Python 图像检测模型 python图像清晰度检测_Python_05

做灰度和经过拉普拉斯算子之后,可以看到人物部分已经不是很清晰了。



Python 图像检测模型 python图像清晰度检测_Python_06

最后算出来的方差只有 530



Python 图像检测模型 python图像清晰度检测_Python_07

剩下的工作就是根据整体图片质量确定阀值了。

局限性

通过上面的实操,我们知道这个算法的技巧在于设置合适的阀值,阈值太低会导致正常图片被误断为模糊图片,阈值太高会导致模糊图片被误判为正常图片。阀值依赖于你实际应用的业务场景,需要根据使用场景的不同做不同的定制。

真正的银弹并不存在。除了需要定个阀值外,有些图片可能会故意做个背景模糊或者背景虚化,这种图片很容易被误杀。

比如:



Python 图像检测模型 python图像清晰度检测_Python 图像检测模型_08

计算出来是这样的,后面一大片都是黑的。



Python 图像检测模型 python图像清晰度检测_拉普拉斯算子_09

这个图前景其实看着还行,但是背景有大片的虚化和模糊,这种情况下比较容易被误杀。

所以最好还是在了解原理之后,根据实际场景来使用。

最后写了个简单的脚本,对传入的图片路径的图片进行计算,然后返回一个 json 字符串。

用法 python getRank.py --imgs=./1.jpg,./2.jpg

源码:…



Python 图像检测模型 python图像清晰度检测_读取图片灰度值区间python_10

学习Python编程知识,想要成为一个更加优秀的程序员,或者你学习Python的时候有难度, 可以来UP主页的Python学习交流圈,里面有学习视频和文件资料,欢迎初学者和想转行的朋友,和我-起交流成长会比自己琢磨更快哦! UP也收藏了一些Python学习的视频教程和Python基础教程,有兴趣的小伙伴可以看看~谢谢阅读!