概述
这里是 SpringCloud Gateway
实践的第一篇,主要讲过滤器的相关实现。Spring-Cloud-Gateway 是以 WebFlux
为基础的响应式架构设计, 是异步非阻塞式的,它能够充分利用多核 CPU 的硬件资源去处理大量的并发请求。
本篇将基于 spring-cloud-gateway 简介 基础环境进行改造。
工作原理
Spring-Cloud-Gateway 基于过滤器实现,同 zuul 类似,有pre和post两种方式的 filter,分别处理前置逻辑和后置逻辑。客户端的请求先经过pre类型的 filter,然后将请求转发到具体的业务服务,收到业务服务的响应之后,再经过post类型的 filter 处理,最后返回响应到客户端。
过滤器执行流程如下,order 越大,优先级越低
接下来我们来验证下 filter
执行顺序。
这里创建 3 个过滤器,分别配置不同的优先级
@Slf4j
public class AFilter implements GlobalFilter {
@Override
public Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain) {
log.info("AFilter前置逻辑");
return chain.filter(exchange).then(Mono.fromRunnable(() -> {
log.info("AFilter后置逻辑");
}));
}
}
@Slf4j
public class BFilter implements GlobalFilter {
@Override
public Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain) {
log.info("BFilter前置逻辑");
return chain.filter(exchange).then(Mono.fromRunnable(() -> {
log.info("BFilter后置逻辑");
}));
}
}
@Slf4j
public class CFilter implements GlobalFilter {
@Override
public Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain) {
log.info("CFilter前置逻辑");
return chain.filter(exchange).then(Mono.fromRunnable(() -> {
log.info("CFilter后置逻辑");
}));
}
}
@Configuration
public class FilterConfig {
@Bean
@Order(-1)
public GlobalFilter a() {
return new AFilter();
}
@Bean
@Order(0)
public GlobalFilter b() {
return new BFilter();
}
@Bean
@Order(1)
public GlobalFilter c() {
return new CFilter();
}
}
curl -X POST -H "Content-Type:application/json" -d '{"name": "admin"}' http://192.168.124.5:2000/p/provider1
curl -X GET -G -d "username=admin" http://192.168.124.5:2000/p/provider1/1
查看网关输出日志
2020-03-29 16:23:22.832 INFO 59326 --- [ctor-http-nio-6] cn.idea360.gateway.filter1.AFilter : AFilter前置逻辑
2020-03-29 16:23:22.832 INFO 59326 --- [ctor-http-nio-6] cn.idea360.gateway.filter1.BFilter : BFilter前置逻辑
2020-03-29 16:23:22.832 INFO 59326 --- [ctor-http-nio-6] cn.idea360.gateway.filter1.CFilter : CFilter前置逻辑
2020-03-29 16:23:22.836 INFO 59326 --- [ctor-http-nio-6] cn.idea360.gateway.filter1.CFilter : CFilter后置逻辑
2020-03-29 16:23:22.836 INFO 59326 --- [ctor-http-nio-6] cn.idea360.gateway.filter1.BFilter : BFilter后置逻辑
2020-03-29 16:23:22.836 INFO 59326 --- [ctor-http-nio-6] cn.idea360.gateway.filter1.AFilter : AFilter后置逻辑
自定义过滤器
现在假设我们要统计某个服务的响应时间,我们可以在代码中
long beginTime = System.currentTimeMillis();
// do something...
long elapsed = System.currentTimeMillis() - beginTime;
log.info("elapsed: {}ms", elapsed);
每次都要这么写是不是很烦?Spring 告诉我们有个东西叫 AOP。但是我们是微服务啊,在每个服务里都写也很烦。这时候就该网关的过滤器登台表演了。
自定义过滤器需要实现 GatewayFilter
和 Ordered
。其中 GatewayFilter
中的这个方法就是用来实现你的自定义的逻辑的
Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain);
而 Ordered
中的 int getOrder()
方法是来给过滤器设定优先级别的,值越大则优先级越低。
好了,让我们来撸代码吧.
/**
* 此过滤器功能为计算请求完成时间
*/
public class ElapsedFilter implements GatewayFilter, Ordered {
private static final String ELAPSED_TIME_BEGIN = "elapsedTimeBegin";
@Override
public Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain) {
exchange.getAttributes().put(ELAPSED_TIME_BEGIN, System.currentTimeMillis());
return chain.filter(exchange).then(
Mono.fromRunnable(() -> {
Long startTime = exchange.getAttribute(ELAPSED_TIME_BEGIN);
if (startTime != null) {
System.out.println(exchange.getRequest().getURI().getRawPath() + ": " + (System.currentTimeMillis() - startTime) + "ms");
}
})
);
}
/*
*过滤器存在优先级,order越大,优先级越低
*/
@Override
public int getOrder() {
return Ordered.LOWEST_PRECEDENCE;
}
}
我们在请求刚刚到达时,往 ServerWebExchange
中放入了一个属性 elapsedTimeBegin
,属性值为当时的毫秒级时间戳。然后在请求执行结束后,又从中取出我们之前放进去的那个时间戳,与当前时间的差值即为该请求的耗时。因为这是与业务无关的日志所以将 Ordered
设为 Integer.MAX_VALUE
以降低优先级。
现在再来看我们之前的问题:怎么来区分是 “pre” 还是 “post” 呢?其实就是 chain.filter(exchange)
之前的就是 “pre” 部分,之后的也就是 then
里边的是 “post” 部分。
创建好 Filter 之后我们将它添加到我们的 Filter Chain 里边
@Configuration
public class FilterConfig {
/**
* http://localhost:8100/filter/provider
* @param builder
* @return
*/
@Bean
public RouteLocator customerRouteLocator(RouteLocatorBuilder builder) {
// @formatter:off
// 可以对比application.yml中关于路由转发的配置
return builder.routes()
.route(r -> r.path("/filter/**")
.filters(f -> f.stripPrefix(1)
.filter(new ElapsedFilter()))
.uri("lb://idc-cloud-provider")
.order(0)
.id("filter")
)
.build();
// @formatter:on
}
}
基于全局过滤器实现审计功能
// AdaptCachedBodyGlobalFilter
@Component
public class LogFilter implements GlobalFilter, Ordered {
private Logger log = LoggerFactory.getLogger(LogFilter.class);
private final ObjectMapper objectMapper = new ObjectMapper();
private static final String START_TIME = "startTime";
private static final List<HttpMessageReader<?>> messageReaders = HandlerStrategies.withDefaults().messageReaders();
@Override
public Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain) {
ServerHttpRequest request = exchange.getRequest();
// 请求路径
String path = request.getPath().pathWithinApplication().value();
// 请求schema: http/https
String scheme = request.getURI().getScheme();
// 请求方法
HttpMethod method = request.getMethod();
// 路由服务地址
URI targetUri = exchange.getAttribute(ServerWebExchangeUtils.GATEWAY_REQUEST_URL_ATTR);
// 请求头
HttpHeaders headers = request.getHeaders();
// 设置startTime
exchange.getAttributes().put(START_TIME, System.currentTimeMillis());
// 获取请求地址
InetSocketAddress remoteAddress = request.getRemoteAddress();
MultiValueMap<String, String> formData = null;
AccessRecord accessRecord = new AccessRecord();
accessRecord.setPath(path);
accessRecord.setSchema(scheme);
accessRecord.setMethod(method.name());
accessRecord.setTargetUri(targetUri.toString());
accessRecord.setRemoteAddress(remoteAddress.toString());
accessRecord.setHeaders(headers);
if (method == HttpMethod.GET) {
formData = request.getQueryParams();
accessRecord.setFormData(formData);
writeAccessRecord(accessRecord);
}
if (method == HttpMethod.POST) {
Mono<Void> voidMono = null;
if (headers.getContentType().equals(MediaType.APPLICATION_JSON)) {
// JSON
voidMono = readBody(exchange, chain, accessRecord);
}
if (headers.getContentType().equals(MediaType.APPLICATION_FORM_URLENCODED)) {
// x-www-form-urlencoded
voidMono = readFormData(exchange, chain, accessRecord);
}
if (voidMono != null) {
return voidMono;
}
}
return chain.filter(exchange);
}
private Mono<Void> readFormData(ServerWebExchange exchange, GatewayFilterChain chain, AccessRecord accessRecord) {
return null;
}
private Mono<Void> readBody(ServerWebExchange exchange, GatewayFilterChain chain, AccessRecord accessRecord) {
return DataBufferUtils.join(exchange.getRequest().getBody()).flatMap(dataBuffer -> {
byte[] bytes = new byte[dataBuffer.readableByteCount()];
dataBuffer.read(bytes);
DataBufferUtils.release(dataBuffer);
Flux<DataBuffer> cachedFlux = Flux.defer(() -> {
DataBuffer buffer = exchange.getResponse().bufferFactory().wrap(bytes);
DataBufferUtils.retain(buffer);
return Mono.just(buffer);
});
// 重写请求体,因为请求体数据只能被消费一次
ServerHttpRequest mutatedRequest = new ServerHttpRequestDecorator(exchange.getRequest()) {
@Override
public Flux<DataBuffer> getBody() {
return cachedFlux;
}
};
ServerWebExchange mutatedExchange = exchange.mutate().request(mutatedRequest).build();
return ServerRequest.create(mutatedExchange, messageReaders)
.bodyToMono(String.class)
.doOnNext(objectValue -> {
accessRecord.setBody(objectValue);
writeAccessRecord(accessRecord);
}).then(chain.filter(mutatedExchange));
});
}
@Override
public int getOrder() {
return Ordered.LOWEST_PRECEDENCE;
}
/**
* TODO 异步日志
* @param accessRecord
*/
private void writeAccessRecord(AccessRecord accessRecord) {
log.info("\n\n start------------------------------------------------- \n " +
"请求路径:{}\n " +
"scheme:{}\n " +
"请求方法:{}\n " +
"目标服务:{}\n " +
"请求头:{}\n " +
"远程IP地址:{}\n " +
"表单参数:{}\n " +
"请求体:{}\n " +
"end------------------------------------------------- \n ",
accessRecord.getPath(), accessRecord.getSchema(), accessRecord.getMethod(), accessRecord.getTargetUri(), accessRecord.getHeaders(), accessRecord.getRemoteAddress(), accessRecord.getFormData(), accessRecord.getBody());
}
}
curl -X POST -H "Content-Type:application/json" -d '{"name": "admin"}' http://192.168.124.5:2000/p/provider1
curl -X GET -G -d "username=admin" http://192.168.124.5:2000/p/provider1/1
输出结果
start-------------------------------------------------
请求路径:/provider1
scheme:http
请求方法:POST
目标服务:http://192.168.124.5:2001/provider1
请求头:[Content-Type:"application/json", User-Agent:"PostmanRuntime/7.22.0", Accept:"*/*", Cache-Control:"no-cache", Postman-Token:"2a4ce04d-8449-411d-abd8-247d20421dc2", Host:"192.168.124.5:2000", Accept-Encoding:"gzip, deflate, br", Content-Length:"16", Connection:"keep-alive"]
远程IP地址:/192.168.124.5:49969
表单参数:null
请求体:{"name":"admin"}
end-------------------------------------------------
接下来,我们来配置日志,方便日志系统提取日志。SpringBoot 默认的日志为 logback。
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<property name="LOGS" value="/Users/cuishiying/Documents/spring-cloud-learning/logs" />
<appender name="Console" class="ch.qos.logback.core.ConsoleAppender">
<layout class="ch.qos.logback.classic.PatternLayout">
<Pattern>
%black(%d{ISO8601}) %highlight(%-5level) [%blue(%t)] %yellow(%C{1.}): %msg%n%throwable
</Pattern>
</layout>
</appender>
<appender name="RollingFile" class="ch.qos.logback.core.rolling.RollingFileAppender">
<file>${LOGS}/spring-boot-logger.log</file>
<encoder
class="ch.qos.logback.classic.encoder.PatternLayoutEncoder">
<Pattern>%d %p %C{1.} [%t] %m%n</Pattern>
</encoder>
<rollingPolicy
class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
<!-- rollover daily and when the file reaches 10 MegaBytes -->
<fileNamePattern>${LOGS}/archived/spring-boot-logger-%d{yyyy-MM-dd}.%i.log
</fileNamePattern>
<timeBasedFileNamingAndTriggeringPolicy
class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
<maxFileSize>10MB</maxFileSize>
</timeBasedFileNamingAndTriggeringPolicy>
</rollingPolicy>
</appender>
<!-- LOG everything at INFO level -->
<root level="info">
<!--<appender-ref ref="RollingFile" />-->
<appender-ref ref="Console" />
</root>
<!-- LOG "cn.idea360*" at TRACE level additivity:是否向上级loger传递打印信息。默认是true-->
<logger name="cn.idea360.gateway" level="info" additivity="false">
<appender-ref ref="RollingFile" />
<appender-ref ref="Console" />
</logger>
</configuration>
这样 console 和日志目录下就都有日志了。
自定义过滤器工厂
如果你看过静态路由的配置,你应该对如下配置有印象。
filters:
- StripPrefix=1
- AddResponseHeader=X-Response-Default-Foo, Default-Bar
StripPrefix
、AddResponseHeader
这两个实际上是两个过滤器工厂(GatewayFilterFactory),用这种配置的方式更灵活方便。
我们就将之前的那个 ElapsedFilter
改造一下,让它能接收一个 boolean
类型的参数,来决定是否将请求参数也打印出来。
public class ElapsedGatewayFilterFactory extends AbstractGatewayFilterFactory<ElapsedGatewayFilterFactory.Config> {
private static final Log log = LogFactory.getLog(GatewayFilter.class);
private static final String ELAPSED_TIME_BEGIN = "elapsedTimeBegin";
private static final String KEY = "withParams";
public List<String> shortcutFieldOrder() {
return Arrays.asList(KEY);
}
public ElapsedGatewayFilterFactory() {
super(Config.class);
}
public GatewayFilter apply(Config config) {
return (exchange, chain) -> {
exchange.getAttributes().put(ELAPSED_TIME_BEGIN, System.currentTimeMillis());
return chain.filter(exchange).then(
Mono.fromRunnable(() -> {
Long startTime = exchange.getAttribute(ELAPSED_TIME_BEGIN);
if (startTime != null) {
StringBuilder sb = new StringBuilder(exchange.getRequest().getURI().getRawPath())
.append(": ")
.append(System.currentTimeMillis() - startTime)
.append("ms");
if (config.isWithParams()) {
sb.append(" params:").append(exchange.getRequest().getQueryParams());
}
log.info(sb.toString());
}
})
);
};
}
public static class Config {
private boolean withParams;
public boolean isWithParams() {
return withParams;
}
public void setWithParams(boolean withParams) {
this.withParams = withParams;
}
}
}
过滤器工厂的顶级接口是 GatewayFilterFactory
,我们可以直接继承它的两个抽象类来简化开发 AbstractGatewayFilterFactory
和 AbstractNameValueGatewayFilterFactory
,这两个抽象类的区别就是前者接收一个参数(像 StripPrefix
和我们创建的这种),后者接收两个参数(像 AddResponseHeader
)。
GatewayFilter apply(Config config)
方法内部实际上是创建了一个 GatewayFilter
的匿名类,具体实现和之前的几乎一样,就不解释了。
静态内部类 Config
就是为了接收那个 boolean
类型的参数服务的,里边的变量名可以随意写,但是要重写 List shortcutFieldOrder()
这个方法。
这里注意一下,一定要调用一下父类的构造器把 Config
类型传过去,否则会报 ClassCastException
public ElapsedGatewayFilterFactory() {
super(Config.class);
}
工厂类我们有了,再把它注册到 Spring 当中
@Bean
public ElapsedGatewayFilterFactory elapsedGatewayFilterFactory() {
return new ElapsedGatewayFilterFactory();
}
然后添加配置(主要改动在 default-filters
配置)
server:
port: 2000
spring:
application:
name: idc-gateway
redis:
host: localhost
port: 6379
timeout: 6000ms # 连接超时时长(毫秒)
jedis:
pool:
max-active: 1000 # 连接池最大连接数(使用负值表示没有限制)
max-wait: -1ms # 连接池最大阻塞等待时间(使用负值表示没有限制)
max-idle: 10 # 连接池中的最大空闲连接
min-idle: 5 # 连接池中的最小空闲连接
cloud:
consul:
host: localhost
port: 8500
gateway:
discovery:
locator:
enabled: true
# 修改在这里。gateway可以通过开启以下配置来打开根据服务的serviceId来匹配路由,默认是大写
default-filters:
- Elapsed=true
routes:
- id: provider # 路由 ID,保持唯一
uri: lb://idc-provider1 # uri指目标服务地址,lb代表从注册中心获取服务
predicates: # 路由条件。Predicate 接受一个输入参数,返回一个布尔值结果。该接口包含多种默认方法来将 Predicate 组合成其他复杂的逻辑(比如:与,或,非)
- Path=/p/**
filters:
- StripPrefix=1 # 过滤器StripPrefix,作用是去掉请求路径的最前面n个部分截取掉。StripPrefix=1就代表截取路径的个数为1,比如前端过来请求/test/good/1/view,匹配成功后,路由到后端的请求路径就会变成http://localhost:8888/good/1/view
结语
本文到此结束。关于 Webflux
的学习刚入门,觉得可以像 Rxjava
那样在 onNext
中拿到异步数据,然而在 post
获取 body 中没生效。经测试可知 getBody
获得的数据输出为 null,而自己通过 Flux.create
创建的数据可以在订阅者中获取到。