Eclipse开发调试ARM裸机程序(七)sd卡读写
主要用到了sd card官网上的几个文档,《 SD Specifications Part 1 Physical Layer Simplified Specification Version 4.10 January 22, 2013 》里边讲了SD卡内部的寄存器,一般的时序。还有《 SD Specifications Part A1 Advanced Security SD Extension Simplified Specification Version 2.00 May 18, 2010 》和《 SD Specifications Part A2 SD Host Controller Simplified Specification Version 3.00 February 25, 2011 》都提供了一些信息。另外一个《 SD Specifications Part E1 SDIO Simplified Specification Version 3.00 February 25, 2011 》是说SDIO的,是以SDIO为接口的衍生品,包括SDIO wifi等等。这些文档都可以在 这里
下载。
、命令
和nandflash操作都很相似,都是发送不同命令进行不同的操作。命令有很多,但是用到这几个。
CMD0 使SD卡进入Idle状态CMD2 广播获取卡的CID信息CMD3 广播获取SD卡所分配的相对地址CMD7 根据获取指定的RCA,选中SD卡CMD9 获取SD相关的存储信息,如块大小,容量等(CSD寄存器) CMD12 停止多块传输操作CMD13 获取卡的状态 CMD17 使SD卡进入传输状态,读取单个块CMD18 使SD卡进入传输状态,读取多个块,直到收到CMD12为止 CMD24 使SD卡进入传输状态,写入单个块CMD25 使SD卡进入传输状态,写入多个块CDM55 特殊指令前命令,在发送ACMD类指令前,需要发送此命令ACMD41 获取SD电压值
、模式
SD卡支持SPI模式和SD模式,没有用SPI模式。
、寄存器
SD卡的寄存器有这些:
每个寄存器都有特定的含义,我这里真分析的CSD寄存器,并用一个小程序算出每个参数的值。
先用Android手机或者开发板下载一个应用 “sd tools”,这样可以显示出SD卡的CSD,然后根据手册《SD Specifications Part 1 Physical Layer Simplified Specification Version 4.10 January 22, 2013》。测试的SD卡的CSD码值如图所示:
小程序如下:
#include <stdio.h>
#include <math.h>
typedef unsigned int u_size;
int main()
{
u_size a = 0, b = 0, c = 0, d = 0;
//CSD = 003e00325b5a83c5e597ffff12800000
a = 0x003e0032; //[127:96]
b = 0x5b5a83c5; //[95 :64]
c = 0xe597ffff; //[63 :32]
d = 0x12800000; //[31 :0 ]
u_size CSD_STRUCTURE = a / (u_size)pow(2,30) & 0x3; // [127:126 - 96]
u_size TAAC = a/(u_size)pow(2,16) & 0xff; // [119:112]
u_size NSAC = a/(u_size)pow(2,8) & 0xff; // [111:104]
u_size TRAN_SPEED = a/(u_size)pow(2,0) & 0xff; // [103:96 - 96]
u_size CCC = b/(u_size)pow(2,20) & 0xfff;
u_size READ_BL_LEN = b/(u_size)pow(2,16) & 0xf; // [83:80-64]
u_size READ_BL_PARTIA = b/(u_size)pow(2,15) & 0x1;
u_size WRITE_BLK_MISALIGN = b/(u_size)pow(2,14) & 0x1;
u_size READ_BLK_MISALIGN = b/(u_size)pow(2,13) & 0x1;
u_size DSR_IMP = b/(u_size)pow(2,12) & 0x1;
u_size C_SIZE = (b & 0x3ff)*(u_size)pow(2,2) \
+ ((c /(u_size)pow(2,30)) & 0x3); // [73:62]
u_size VDD_R_CURR_MIN = c/(u_size)pow(2,27) & 0x7;
u_size VDD_R_CURR_MAX = c/(u_size)pow(2,24) & 0x7;
u_size VDD_W_CURR_MIN = c/(u_size)pow(2,21) & 0x7;
u_size VDD_W_CURR_MAX = c/(u_size)pow(2,18) & 0x7;
u_size C_SIZE_MULT = c/(u_size)pow(2,15) & 0x7; // [49:47]
u_size ERASE_BLK_EN = d/(u_size)pow(2,14) & 0x1;
u_size SECTOR_SIZE = d/(u_size)pow(2,7) & 0xef;
u_size WP_GRP_SIZE = c/(u_size)pow(2,0) & 0xef;
u_size WP_GRP_ENABLE = d/(u_size)pow(2,31) & 0x1;
u_size R2W_FACTOR = d/(u_size)pow(2,26) & 0x7;
u_size WRITE_BL_LEN = d/(u_size)pow(2,22) & 0xf;
u_size WRITE_BL_PARTIAL = d/(u_size)pow(2,21) & 0x1;
u_size TMP_WRITE_PROTECT = d/(u_size)pow(2,12) & 0x1;
u_size FILE_FORMAT = d/(u_size)pow(2,10) & 0x3;
u_size CRC = d/(u_size)pow(2,1) & 0xff;
long C = (C_SIZE + 1) * pow(2, (C_SIZE_MULT+2)) * pow(2, READ_BL_LEN);
// C = (3863 + 1) * 512 * 1024
printf(" 1. CSD_STRUCTURE = 0x%x\n", CSD_STRUCTURE);
printf(" 3. TAAC = 0x%x\n", TAAC);
printf(" 4. NSAC = 0x%x\n", NSAC);
printf(" 5. TRAN_SPEED = 0x%x (0x32==>25MHz;0x5a==>50MHz)\n", TRAN_SPEED);
printf(" 6. CCC = 0x%x\n", CCC);
printf(" 7. READ_BL_LEN = %d\n", READ_BL_LEN);
printf(" 8. READ_BL_PARTIA = %d\n", READ_BL_PARTIA);
printf(" 9. WRITE_BLK_MISALIGN = %d\n", WRITE_BLK_MISALIGN);
printf("10. READ_BLK_MISALIGN = %d\n", READ_BLK_MISALIGN);
printf("11. DSR_IMP = %d\n", DSR_IMP);
printf("12. / *No Use* /\n");
printf("13. C_SIZE = %d\n", C_SIZE);
printf("14. VDD_R_CURR_MIN = %d\n", VDD_R_CURR_MIN);
printf("15. VDD_R_CURR_MAX = %d\n", VDD_R_CURR_MAX);
printf("16. VDD_W_CURR_MIN = %d\n", VDD_W_CURR_MIN);
printf("17. VDD_W_CURR_MAX = %d\n", VDD_W_CURR_MAX);
printf("18. C_SIZE_MULT = %d\t""(本SD卡容量 = %f G)\n", C_SIZE_MULT, (float)C/1073741824);
printf("19. ERASE_BLK_EN = 0x%x\n", ERASE_BLK_EN);
printf("20. SECTOR_SIZE = 0x%x\n", SECTOR_SIZE);
printf("21. WP_GRP_SIZE = 0x%x\n", WP_GRP_SIZE);
printf("22. WP_GRP_ENABLE = 0x%x\n", WP_GRP_ENABLE);
printf("23. / *No Use* /\n");
printf("24. R2W_FACTOR = 0x%x\n", R2W_FACTOR);
printf("25. WRITE_BL_LEN = 0x%x\n", WRITE_BL_LEN);
printf("26. WRITE_BL_PARTIAL = 0x%x\n", WRITE_BL_PARTIAL);
printf("31. TMP_WRITE_PROTECT = 0x%x\n", TMP_WRITE_PROTECT);
printf("32. FILE_FORMAT = 0x%x\n", FILE_FORMAT);
printf("34. CRC = 0x%x\t", CRC);
return 0;
}
运行结果如下:
SDICCON的后7位是发送命令值。但是真正填写的时候并不是命令值而是&上了一个值(0x64),这个还没有找出原因所在。例如如果发送命令2,SDICCON的后7位应该是这样的:(0x40 | 2)。
、文件系统
如果只是简单的放一个数据,没有文件系统会显示无力,就无法在PC直接上查看。SD卡应该有一个文件系统如常用的fat32。这个u-boot中有实现,这里就先不做了。
、代码
完整代码这里下载:
这里贴出sdi.c:
/**
* @file sdi.c
* @brief sd卡 读写
* @details 本程序实现了,读SD卡的CSD寄存器;读写SD卡,并用LED显示。
* 程序正常:led1首先点亮,然后是0-15的二进制显示
* 程序出错:led2首先点亮,然后是乱无序的二进制显示
* 目前只能读写2G以下的SD卡
* (启动代码是适用于mini2440 nand 256M的开发板)
* 读写SD有三种模式:中断,DMA中断,查询。本程序使用的是查询
* @author kangear
* @date 2013-4-26
* @version A001
* @par Copyright (c):
* XXX公司
* @par History:
* version: author, date, desc\n
*
* docs 1.SD Specifications Part 1 Physical Layer Simplified Specification Version 4.10 January 22, 2013.pdf
* 2.SD Specifications Part A1 Advanced Security SD Extension Simplified Specification Version 2.00 May 18, 2010.pdf
* 3.SD Specifications Part A2 SD Host Controller Simplified Specification Version 3.00 February 25, 2011.pdf
* 4.SD Specifications Part E1 SDIO Simplified Specification Version 3.00 February 25, 2011.pdf
*
* download addr:https://www.sdcard.org/downloads/pls/simplified_specs/
*/
//#include <stdio.h>
//#include <string.h>
#include "def.h"
//#include "option.h"
//#include "2440addr.h"
#include "s3c24xx.h"
//#include "2440lib.h"
#include "sdi.h"
/*
* 用在SDICCON中的[7:0] 现在没有搞懂它的实际意义
* CMD1 = MAGIC_NUMBER | 1
*/
#define MAGIC_NUMBER 64
#define INICLK 300000
#define SDCLK 24000000 //PCLK=49.392MHz
#define POL 0
#define INT 1
#define DMA 2
int CMD13(void); // Send card status
int CMD9(void);
unsigned int *Tx_buffer; //128[word]*16[blk]=8192[byte]
unsigned int *Rx_buffer; //128[word]*16[blk]=8192[byte]
volatile unsigned int rd_cnt;
volatile unsigned int wt_cnt;
volatile unsigned int block;
volatile unsigned int TR_end=0;
int Wide=0; // 0:1bit, 1:4bit
int MMC=0; // 0:SD , 1:MMC
int Maker_ID;
char Product_Name[7];
int Serial_Num;
int PCLK = 50000000;
volatile int RCA;
void Test_SDI(void)
{
U32 save_rGPEUP, save_rGPECON;
RCA=0;
MMC=0;
block=3072; //3072Blocks=1.5MByte, ((2Block=1024Byte)*1024Block=1MByte)
save_rGPEUP=GPEUP;
save_rGPECON=GPECON;
GPEUP = 0xf83f; // SDCMD, SDDAT[3:0] => PU En.
GPECON = 0xaaaaaaaa; //SDCMD, SDDAT[3:0]
//Uart_Printf("\nSDI Card Write and Read Test\n");
if(!SD_card_init())
return;
TR_Buf_new();
Wt_Block();
Rd_Block();
View_Rx_buf();
Card_sel_desel(0); // Card deselect
if(!CMD9())
//Uart_Printf("Get CSD fail!!!\n");
SDIDCON=0;//tark???
SDICSTA=0xffff;
GPEUP=save_rGPEUP;
GPECON=save_rGPECON;
}
void TR_Buf_new(void)
{
//-- Tx & Rx Buffer initialize
int i, j;
Tx_buffer=(unsigned int *)0x31000000;
j=0;
for(i=0;i<2048;i++) //128[word]*16[blk]=8192[byte]
*(Tx_buffer+i)=i+j;
Flush_Rx_buf();
}
void Flush_Rx_buf(void)
{
//-- Flushing Rx buffer
int i;
Rx_buffer=(unsigned int *)0x31800000;
for(i=0;i<2048;i++) //128[word]*16[blk]=8192[byte]
*(Rx_buffer+i)=0;
//Uart_Printf("End Rx buffer flush\n");
}
void View_Rx_buf()
{
//-- Display Rx buffer
int i,error=0;
Tx_buffer=(unsigned int *)0x31000000;
Rx_buffer=(unsigned int *)0x31800000;
//Uart_Printf("Check Rx data\n");
for(i=0;i<128*block;i++)
{
if(Rx_buffer[i] != Tx_buffer[i])
{
//Uart_Printf("\nTx/Rx error\n");
//Uart_Printf("%d:Tx-0x%08x, Rx-0x%08x\n",i,Tx_buffer[i], Rx_buffer[i]);
error=1;
break;
}
Uart_Printf(".");
}
if(!error)
{
//Uart_Printf("\nThe Tx_buffer is same to Rx_buffer!\n");
//Uart_Printf("SD CARD Write and Read test is OK!\n");
}
}
void View_Tx_buf(void)
{
}
int SD_card_init(void)
{
//-- SD controller & card initialize
int i;
/* Important notice for MMC test condition */
/* Cmd & Data lines must be enabled by pull up resister */
SDIPRE=PCLK/(INICLK)-1; // 400KHz
//Uart_Printf("Init. Frequency is %dHz\n",(PCLK/(SDIPRE+1)));
SDICON=(1<<4)|1; // Type B, clk enable
SDIFSTA=SDIFSTA|(1<<16); //YH 040223 FIFO reset
SDIBSIZE=0x200; // 512byte(128word)
SDIDTIMER=0x7fffff; // Set timeout count
for(i=0;i<0x1000;i++); // Wait 74SDCLK for MMC card
CMD0();
//Uart_Printf("In idle\n");
//-- Check SD card OCR
if(!Chk_SD_OCR())
{
// fail
GPBDAT = (~(2<<5)); // 点亮LED2
//Uart_Printf("Initialize fail\nNo Card assertion\n");
return 0;
}
// Uart_Printf("In SD ready\n");
GPBDAT = (~(1<<5)); // 点亮LED1
do
{
//-- Check attaced cards, it makes card identification state
SDICARG = 0x0; // CMD2(stuff bit)
SDICCON = (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (MAGIC_NUMBER | 2); //lng_resp, wait_resp, start, CMD2
//-- Check end of CMD2
} while (!Chk_CMDend(2, 1));
SDICSTA=0xa00; // Clear cmd_end(with rsp)
//Uart_Printf("End id\n");
do
{
//--Send RCA
SDICARG = MMC << 16; // CMD3(MMC:Set RCA, SD:Ask RCA-->SBZ)
SDICCON = (0x1 << 9) | (0x1 << 8) | (MAGIC_NUMBER | 3); // sht_resp, wait_resp, start, CMD3
//-- Check end of CMD3
if (!Chk_CMDend(3, 1))
continue;
SDICSTA = 0xa00; // Clear cmd_end(with rsp)
//--Publish RCA
RCA = (SDIRSP0 & 0xffff0000) >> 16;
//Uart_Printf("RCA=0x%x\n",RCA);
SDIPRE = PCLK / (SDCLK) - 1; // Normal clock=25MHz
//Uart_Printf("SD Frequency is %dHz\n",(PCLK/(SDIPRE+1)));
//--State(stand-by) check
if (SDIRSP0 & 0x1e00 != 0x600) // CURRENT_STATE check
continue;
} while (0);
//Uart_Printf("In stand-by\n");
Card_sel_desel(1); // Select
Set_4bit_bus();
return 1;
}
void Card_sel_desel(char sel_desel)
{
//-- Card select or deselect
if(sel_desel)
{
do
{
SDICARG = RCA << 16; // CMD7(RCA,stuff bit)
SDICCON = (0x1 << 9) | (0x1 << 8) | (MAGIC_NUMBER | 7); // sht_resp, wait_resp, start, CMD7
//-- Check end of CMD7
if (!Chk_CMDend(7, 1))
continue;
SDICSTA = 0xa00; // Clear cmd_end(with rsp)
//--State(transfer) check
if (SDIRSP0 & 0x1e00 != 0x800)
continue;
} while (0);
}
else
{
do
{
SDICARG = 0 << 16; //CMD7(RCA,stuff bit)
SDICCON = (0x1 << 8) | (MAGIC_NUMBER | 7); //no_resp, start, CMD7
//-- Check end of CMD7
if (!Chk_CMDend(7, 0))
continue;
} while (0);
SDICSTA=0x800; // Clear cmd_end(no rsp)
}
}
//void __irq Rd_Int(void)
//{
// U32 i,status;
//
// status=SDIFSTA;
// if( (status&0x200) == 0x200 ) // Check Last interrupt?
// {
// for(i=(status & 0x7f)/4;i>0;i--)
// {
// *Rx_buffer++=SDIDAT;
// rd_cnt++;
// }
// SDIFSTA=SDIFSTA&0x200; //Clear Rx FIFO Last data Ready, YH 040221
// }
// else if( (status&0x80) == 0x80 ) // Check Half interrupt?
// {
// for(i=0;i<8;i++)
// {
// *Rx_buffer++=SDIDAT;
// rd_cnt++;
// }
// }
//
// ClearPending(BIT_SDI);
//}
//void __irq Wt_Int(void)
//{
// ClearPending(BIT_SDI);
//
// SDIDAT=*Tx_buffer++;
// wt_cnt++;
//
// if(wt_cnt==128*block)
// {
// rINTMSK |= BIT_SDI;
// SDIDAT=*Tx_buffer;
// TR_end=1;
// }
//}
//
//void __irq DMA_end(void)
//{
// ClearPending(BIT_DMA0);
//
// TR_end=1;
//}
void Rd_Block(void)
{
U32 mode;
int status;
rd_cnt=0;
//Uart_Printf("Block read test[ Polling read ]\n");
mode = 0 ;
SDIFSTA=SDIFSTA|(1<<16); // FIFO reset
if(mode!=2)
SDIDCON=(2<<22)|(1<<19)|(1<<17)|(Wide<<16)|(1<<14)|(2<<12)|(block<<0); //YH 040220
SDICARG=0x0; // CMD17/18(addr)
RERDCMD:
switch(mode)
{
case POL:
if(block<2) // SINGLE_READ
{
SDICCON=(0x1<<9)|(0x1<<8)|(MAGIC_NUMBER | 17); // sht_resp, wait_resp, dat, start, CMD17
if(!Chk_CMDend(17, 1)) //-- Check end of CMD17
goto RERDCMD;
}
else // MULTI_READ
{
SDICCON=(0x1<<9)|(0x1<<8)|(MAGIC_NUMBER | 18); // sht_resp, wait_resp, dat, start, CMD18
if(!Chk_CMDend(18, 1)) //-- Check end of CMD18
goto RERDCMD;
}
SDICSTA=0xa00; // Clear cmd_end(with rsp)
while(rd_cnt<128*block) // 512*block bytes
{
if((SDIDSTA&0x20)==0x20) // Check timeout
{
SDIDSTA=(0x1<<0x5); // Clear timeout flag
break;
}
status=SDIFSTA;
if((status&0x1000)==0x1000) // Is Rx data?
{
*Rx_buffer++=SDIDAT;
rd_cnt++;
}
}
break;
// case INT:
// pISR_SDI=(unsigned)Rd_Int;
// rINTMSK = ~(BIT_SDI);
//
// rSDIIMSK=5; // Last & Rx FIFO half int.
//
// if(block<2) // SINGLE_READ
// {
// SDICCON=(0x1<<9)|(0x1<<8)|(MAGIC_NUMBER | 17); // sht_resp, wait_resp, dat, start, CMD17
// if(!Chk_CMDend(17, 1)) //-- Check end of CMD17
// goto RERDCMD;
// }
// else // MULTI_READ
// {
// SDICCON=(0x1<<9)|(0x1<<8)|(MAGIC_NUMBER | 18); // sht_resp, wait_resp, dat, start, CMD18
// if(!Chk_CMDend(18, 1)) //-- Check end of CMD18
// goto RERDCMD;
// }
//
// SDICSTA=0xa00; // Clear cmd_end(with rsp)
//
// while(rd_cnt<128*block);
//
// rINTMSK |= (BIT_SDI);
// rSDIIMSK=0; // All mask
// break;
//
// case DMA:
// pISR_DMA0=(unsigned)DMA_end;
// rINTMSK = ~(BIT_DMA0);
// SDIDCON=SDIDCON|(1<<24); //YH 040227, Burst4 Enable
//
// rDISRC0=(int)(SDIDAT); // SDIDAT
// rDISRCC0=(1<<1)+(1<<0); // APB, fix
// rDIDST0=(U32)(Rx_buffer); // Rx_buffer
// rDIDSTC0=(0<<1)+(0<<0); // AHB, inc
// rDCON0=(1<<31)+(0<<30)+(1<<29)+(0<<28)+(0<<27)+(2<<24)+(1<<23)+(1<<22)+(2<<20)+128*block;
//
// rDMASKTRIG0=(0<<2)+(1<<1)+0; //no-stop, DMA2 channel on, no-sw trigger
//
// SDIDCON=(2<<22)|(1<<19)|(1<<17)|(Wide<<16)|(1<<15)|(1<<14)|(2<<12)|(block<<0);
// if(block<2) // SINGLE_READ
// {
// SDICCON=(0x1<<9)|(0x1<<8)|(MAGIC_NUMBER | 17); // sht_resp, wait_resp, dat, start, CMD17
// if(!Chk_CMDend(17, 1)) //-- Check end of CMD17
// goto RERDCMD;
// }
// else // MULTI_READ
// {
// SDICCON=(0x1<<9)|(0x1<<8)|(MAGIC_NUMBER | 18); // sht_resp, wait_resp, dat, start, CMD18
// if(!Chk_CMDend(18, 1)) //-- Check end of CMD18
// goto RERDCMD;
// }
//
// SDICSTA=0xa00; // Clear cmd_end(with rsp)
// while(!TR_end);
// Uart_Printf("SDIFSTA=0x%x\n",SDIFSTA);
// rINTMSK |= (BIT_DMA0);
// TR_end=0;
// rDMASKTRIG0=(1<<2); //DMA0 stop
// break;
default:
break;
}
//-- Check end of DATA
if(!Chk_DATend())
//Uart_Printf("dat error\n");
SDIDCON=SDIDCON&~(7<<12);
SDIFSTA=SDIFSTA&0x200; //Clear Rx FIFO Last data Ready, YH 040221
SDIDSTA=0x10; // Clear data Tx/Rx end detect
if(block>1)
{
RERCMD12:
//--Stop cmd(CMD12)
SDICARG=0x0; //CMD12(stuff bit)
SDICCON=(0x1<<9)|(0x1<<8)|(MAGIC_NUMBER | 12);//sht_resp, wait_resp, start, CMD12
//-- Check end of CMD12
if(!Chk_CMDend(12, 1))
goto RERCMD12;
SDICSTA=0xa00; // Clear cmd_end(with rsp)
}
}
void Wt_Block(void)
{
U32 mode;
int status;
wt_cnt=0;
//Uart_Printf("Block write test[ Polling write ]\n");
mode = 0 ;
SDIFSTA=SDIFSTA|(1<<16); //YH 040223 FIFO reset
if(mode!=2)
SDIDCON=(2<<22)|(1<<20)|(1<<17)|(Wide<<16)|(1<<14)|(3<<12)|(block<<0); //YH 040220
SDICARG=0x0; // CMD24/25(addr)
REWTCMD:
switch(mode)
{
case POL:
if(block<2) // SINGLE_WRITE
{
SDICCON=(0x1<<9)|(0x1<<8)|(MAGIC_NUMBER | 24); //sht_resp, wait_resp, dat, start, CMD24
if(!Chk_CMDend(24, 1)) //-- Check end of CMD24
goto REWTCMD;
}
else // MULTI_WRITE
{
SDICCON=(0x1<<9)|(0x1<<8)|(MAGIC_NUMBER | 25); //sht_resp, wait_resp, dat, start, CMD25
if(!Chk_CMDend(25, 1)) //-- Check end of CMD25
goto REWTCMD;
}
SDICSTA=0xa00; // Clear cmd_end(with rsp)
while(wt_cnt<128*block)
{
status=SDIFSTA;
if((status&0x2000)==0x2000)
{
SDIDAT=*Tx_buffer++;
wt_cnt++;
Uart_Printf("Block No.=%d, wt_cnt=%d\n",block,wt_cnt);
}
}
break;
// case INT:
// pISR_SDI=(unsigned)Wt_Int;
// rINTMSK = ~(BIT_SDI);
//
// rSDIIMSK=0x10; // Tx FIFO half int.
//
// if(block<2) // SINGLE_WRITE
// {
// SDICCON=(0x1<<9)|(0x1<<8)|(MAGIC_NUMBER | 24); //sht_resp, wait_resp, dat, start, CMD24
// if(!Chk_CMDend(24, 1)) //-- Check end of CMD24
// goto REWTCMD;
// }
// else // MULTI_WRITE
// {
// SDICCON=(0x1<<9)|(0x1<<8)|(MAGIC_NUMBER | 25); //sht_resp, wait_resp, dat, start, CMD25
// if(!Chk_CMDend(25, 1)) //-- Check end of CMD25
// goto REWTCMD;
// }
//
// SDICSTA=0xa00; // Clear cmd_end(with rsp)
//
// while(!TR_end);
// //while(wt_cnt<128);
//
// rINTMSK |= (BIT_SDI);
// TR_end=0;
// rSDIIMSK=0; // All mask
// break;
//
// case DMA:
// pISR_DMA0=(unsigned)DMA_end;
// rINTMSK = ~(BIT_DMA0);
// SDIDCON=SDIDCON|(1<<24); //YH 040227, Burst4 Enable
//
// rDISRC0=(int)(Tx_buffer); // Tx_buffer
// rDISRCC0=(0<<1)+(0<<0); // AHB, inc
// rDIDST0=(U32)(SDIDAT); // SDIDAT
// rDIDSTC0=(1<<1)+(1<<0); // APB, fix
// rDCON0=(1<<31)+(0<<30)+(1<<29)+(0<<28)+(0<<27)+(2<<24)+(1<<23)+(1<<22)+(2<<20)+128*block;
// //handshake, sync PCLK, TC int, single tx, single service, SDI, H/W request,
// //auto-reload off, word, 128blk*num
// rDMASKTRIG0=(0<<2)+(1<<1)+0; //no-stop, DMA0 channel on, no-sw trigger
//
// SDIDCON=(2<<22)|(1<<20)|(1<<17)|(Wide<<16)|(1<<15)|(1<<14)|(3<<12)|(block<<0); //YH 040220
//
// // Word Tx, Tx after rsp, blk, 4bit bus, dma enable, Tx start, blk num
// if(block<2) // SINGLE_WRITE
// {
// SDICCON=(0x1<<9)|(0x1<<8)|(MAGIC_NUMBER | 24); //sht_resp, wait_resp, dat, start, CMD24
// if(!Chk_CMDend(24, 1)) //-- Check end of CMD24
// goto REWTCMD;
// }
// else // MULTI_WRITE
// {
// SDICCON=(0x1<<9)|(0x1<<8)|(MAGIC_NUMBER | 25); //sht_resp, wait_resp, dat, start, CMD25
// if(!Chk_CMDend(25, 1)) //-- Check end of CMD25
// goto REWTCMD;
// }
//
// SDICSTA=0xa00; // Clear cmd_end(with rsp)
//
// while(!TR_end);
//
// rINTMSK |= (BIT_DMA0);
// TR_end=0;
// rDMASKTRIG0=(1<<2); //DMA0 stop
//
// break;
default:
break;
}
//-- Check end of DATA
if(!Chk_DATend())
//Uart_Printf("dat error\n");
SDIDCON=SDIDCON&~(7<<12); //YH 040220, Clear Data Transfer mode => no operation, Cleata Data Transfer start
SDIDSTA=0x10; // Clear data Tx/Rx end
if(block>1)
{
//--Stop cmd(CMD12)
REWCMD12:
SDIDCON=(1<<18)|(1<<17)|(0<<16)|(1<<14)|(1<<12)|(block<<0); //YH 040220
SDICARG=0x0; //CMD12(stuff bit)
SDICCON=(0x1<<9)|(0x1<<8)|(MAGIC_NUMBER | 12); //sht_resp, wait_resp, start, CMD12
//-- Check end of CMD12
if(!Chk_CMDend(12, 1))
goto REWCMD12;
SDICSTA=0xa00; // Clear cmd_end(with rsp)
//-- Check end of DATA(with busy state)
if(!Chk_BUSYend())
//Uart_Printf("error\n");
SDIDSTA=0x08; //! Should be cleared by writing '1'.
}
}
void Delay(volatile unsigned long dly)
{
for(; dly > 0; dly--);
}
int Chk_CMDend(int cmd, int be_resp)
//0: Timeout
{
int finish0;
if(!be_resp) // No response
{
finish0=SDICSTA;
while((finish0&0x800)!=0x800) // Check cmd end
finish0=SDICSTA;
SDICSTA=finish0;// Clear cmd end state
return 1;
}
else // With response
{
finish0=SDICSTA;
while( !( ((finish0&0x200)==0x200) | ((finish0&0x400)==0x400) )) // Check cmd/rsp end
finish0=SDICSTA;
if(cmd==1 | cmd==41) // CRC no check, CMD9 is a long Resp. command.
{
if( (finish0&0xf00) != 0xa00 ) // Check error
{
SDICSTA=finish0; // Clear error state
if(((finish0&0x400)==0x400))
return 0; // Timeout error
}
SDICSTA=finish0; // Clear cmd & rsp end state
}
else // CRC check
{
if( (finish0&0x1f00) != 0xa00 ) // Check error
{
//Uart_Printf("CMD%d:SDICSTA=0x%x, SDIRSP0=0x%x\n",cmd, SDICSTA, SDIRSP0);
SDICSTA=finish0; // Clear error state
if(((finish0&0x400)==0x400))
return 0; // Timeout error
}
SDICSTA=finish0;
}
return 1;
}
}
int Chk_DATend(void)
{
int finish;
finish=SDIDSTA;
while( !( ((finish&0x10)==0x10) | ((finish&0x20)==0x20) ))
// Chek timeout or data end
finish=SDIDSTA;
if( (finish&0xfc) != 0x10 )
{
//Uart_Printf("DATA:finish=0x%x\n", finish);
SDIDSTA=0xec; // Clear error state
return 0;
}
return 1;
}
int Chk_BUSYend(void)
{
int finish;
finish=SDIDSTA;
while( !( ((finish&0x08)==0x08) | ((finish&0x20)==0x20) ))
finish=SDIDSTA;
if( (finish&0xfc) != 0x08 )
{
//Uart_Printf("DATA:finish=0x%x\n", finish);
SDIDSTA=0xf4; //clear error state
return 0;
}
return 1;
}
void CMD0(void)
{
//-- Make card idle state
SDICARG=0x0; // CMD0(stuff bit)
SDICCON=(1<<8)|(MAGIC_NUMBER | 0); // No_resp, start, CMD0
//-- Check end of CMD0
Chk_CMDend(0, 0);
SDICSTA=0x800; // Clear cmd_end(no rsp)
}
int Chk_SD_OCR(void)
{
int i;
//-- Negotiate operating condition for SD, it makes card ready state
for(i=0;i<50;i++) //If this time is short, init. can be fail.
{
CMD55(); // Make ACMD
SDICARG=0xff8000; //ACMD41(SD OCR:2.7V~3.6V)
SDICCON=(0x1<<9)|(0x1<<8)|(MAGIC_NUMBER | 41);//sht_resp, wait_resp, start, ACMD41
//-- Check end of ACMD41
if( Chk_CMDend(41, 1) & SDIRSP0==0x80ff8000 )
{
SDICSTA=0xa00; // Clear cmd_end(with rsp)
return 1; // Success
}
Delay(20000); // Wait Card power up status 1Sec
//Delay(200); // Wait Card power up status
}
Uart_Printf("SDIRSP0=0x%x\n",SDIRSP0);
SDICSTA=0xa00; // Clear cmd_end(with rsp)
return 0; // Fail
}
int CMD55(void)
{
//--Make ACMD
SDICARG=RCA<<16; //CMD7(RCA,stuff bit)
SDICCON=(0x1<<9)|(0x1<<8)|(MAGIC_NUMBER | 55); //sht_resp, wait_resp, start, CMD55
//-- Check end of CMD55
if(!Chk_CMDend(55, 1))
return 0;
SDICSTA=0xa00; // Clear cmd_end(with rsp)
return 1;
}
int CMD13(void)//SEND_STATUS
{
int response0;
SDICARG=RCA<<16; // CMD13(RCA,stuff bit)
SDICCON=(0x1<<9)|(0x1<<8)|(MAGIC_NUMBER | 13); // sht_resp, wait_resp, start, CMD13
//-- Check end of CMD13
if(!Chk_CMDend(13, 1))
return 0;
Uart_Printf("SDIRSP0=0x%x\n", SDIRSP0);
if(SDIRSP0&0x100)
Uart_Printf("Ready for Data\n");
//else
Uart_Printf("Not Ready\n");
response0=SDIRSP0;
response0 &= 0x3c00;
response0 = response0 >> 9;
Uart_Printf("Current Status=%d\n", response0);
if(response0==6)
Test_SDI();
SDICSTA=0xa00; // Clear cmd_end(with rsp)
return 1;
}
int CMD9(void)//SEND_CSD
{
SDICARG=RCA<<16; // CMD9(RCA,stuff bit)
SDICCON=(0x1<<10)|(0x1<<9)|(0x1<<8)|(MAGIC_NUMBER | 9); // long_resp, wait_resp, start, CMD9
//Uart_Printf("\nCSD register :\n");
//-- Check end of CMD9
if(!Chk_CMDend(9, 1))
return 0;
//Uart_Printf("SDIRSP0=0x%x\nSDIRSP1=0x%x\nSDIRSP2=0x%x\nSDIRSP3=0x%x\n", SDIRSP0,rSDIRSP1,rSDIRSP2,rSDIRSP3);
return 1;
}
void Set_4bit_bus(void)
{
Wide=1;
SetBus();
Uart_Printf("\n****4bit bus****\n");
}
void SetBus(void)
{
do
{
CMD55(); // Make ACMD
//-- CMD6 implement
SDICARG = Wide << 1; //Wide 0: 1bit, 1: 4bit
SDICCON = (0x1 << 9) | (0x1 << 8) | (MAGIC_NUMBER | 6); //sht_resp, wait_resp, start, CMD55
if (!Chk_CMDend(6, 1)) // ACMD6
continue;
SDICSTA = 0xa00; // Clear cmd_end(with rsp)
} while (0);
}
void Set_Prt(void)
{
//-- Set protection addr.0 ~ 262144(32*16*512)
//Uart_Printf("[Set protection(addr.0 ~ 262144) test]\n");
do
{
//--Make ACMD
SDICARG = 0; // CMD28(addr)
SDICCON = (0x1 << 9) | (0x1 << 8) | (MAGIC_NUMBER | 28); //sht_resp, wait_resp, start, CMD28
//-- Check end of CMD28
if (!Chk_CMDend(28, 1))
continue;
SDICSTA = 0xa00; // Clear cmd_end(with rsp)
} while (0);
}
void Clr_Prt(void)
{
//-- Clear protection addr.0 ~ 262144(32*16*512)
Uart_Printf("[Clear protection(addr.0 ~ 262144) test]\n");
do
{
//--Make ACMD
SDICARG = 0; // CMD29(addr)
SDICCON = (0x1 << 9) | (0x1 << 8) | (MAGIC_NUMBER | 29); //sht_resp, wait_resp, start, CMD29
//-- Check end of CMD29
if (!Chk_CMDend(29, 1))
continue;
SDICSTA = 0xa00; // Clear cmd_end(with rsp)
} while (0);
}
总结:调试和运行还是用很在的差别的,eclipse调试没有问题的,运行就会有点小问题,eclipse可以确定程序的框架,运行可以细节地显示问题,那个延时Delay(200)没有问题,到运行时候调整为Delay(2000)才可以正常。jlink的速率什么的都会影响,并不能代码整个实时的运行效果。在线调试和下载运行调试相接合才是王道。