一、引言

前几天有博友咨询,能否在视频中实现雪花飘落的效果,答案是肯定的。老猿前天简单构思了一下,利用周末时间,使用OpenCV-Python通过图像循环显示方式,实现了给图片显示增加动态雪花飘落的效果,经过不停优化,效果还是不错的,花了半天时间将实现过程总结成文,供大家参考。

二、案例背景

本次雪花来源于如下图片(文件名:f:\pic\snow.jpg):

python 图像热图掩码 python图像代码_python

背景可以是任意图片,下面是老猿在网上找到的一张珠峰图像(文件名:f:\pic\Qomolangma2.jpg):

python 图像热图掩码 python图像代码_OpenCV_02

珠峰背景的天空飘落着纷纷扬扬的雪花,意境不错吧?

三、实现思路

要实现雪花飘落,单张图片的单次显示肯定不够,需要不停循环显示图片,并且在每次图片显示时,生成新的雪花并更新图片中已有雪花的位置,这就需要将图片中每个雪花的位置精确管理。

自然界的雪花大小是不同的,因此为了提升逼真效果,还需要使得雪花大小在一定范围内随机变化和旋转。

不停产生大小不同的雪花,如果每次产生雪花都对雪花进行变换其实浪费了系统的资源,因此为了提升处理性能,只在程序开始初始化时一次批量生产各种不同大小、不同旋转角度的各种雪花,后续程序生成雪花时,直接从批量生成的雪花中取一个作为要生成的雪花,而不用每次从基本的雪花图像开始进行变换。

四、关键实现代码

4.1、生成各种雪花形状

def initSnowShapes():
    """
    从文件中读入雪花图片,并进行不同尺度的缩小和不同角度的旋转从而生成不同的雪花形状,这些雪花形状保存到全局列表中snowShapesList
    """
    global snowShapesList
    imgSnow = readImgFile(r'f:\pic\snow.jpg') 
    imgSnow = cv2.resize(imgSnow, None, fx=0.2, fy=0.2) #图片文件中的雪花比较大,需要缩小才能象自然的雪花形象
    minFactor,maxFactor = 50,100  #雪花大小在imgSnow的0.5-1倍之间变化

    for factor in range(minFactor,maxFactor,5): #每次增加5%大小
        f = factor*0.01
        imgSnowSize = cv2.resize(imgSnow, None, fx=f, fy=f)
        for ange in range(0,360,5):#雪花0-360之间旋转
            imgRotate = rotationImg(imgSnowSize,ange)
            snowShapesList.append(imgRotate)

4.2、产生一排雪花

def generateOneRowSnows(width,count):
    """
    产生一排雪花对象,每个雪花随机从snowShapesList取一个、横坐标位置随机、纵坐标初始为0
    :param width: 背景图像宽度
    :param count: 希望的雪花数
    :return:一个包含产生的多个雪花对象信息的列表,每个列表的元素代表一个雪花对象,雪花对象包含三个信息,在snowShapesList的索引号、初始x坐标、初始y坐标(才生成固定为0)
    """
    global snowShapesList
    line = []
    picCount = len(snowShapesList) 
    for loop in range(count):
        imgId = random.randint(0,picCount-1)
        xPos = random.randint(0,width-1)
        line.append((imgId,xPos,0))
    return line

4.3、将所有雪花对象融合到背景图像

def putSnowObjectToImg(img):
    """
    将所有snowObjects中的雪花对象融合放到图像img中,融合时y坐标随机下移一定高度,x坐标左右随机小范围内移动
    """
    global snowShapesList,snowObjects
    horizontalMaxDistance,verticalMaxDistance = 5,20 #水平方向左右漂移最大值和竖直方向下落最大值
    snowObjectCount = len(snowObjects)
    rows,cols = img.shape[0:2]
    imgResult = np.array(img)
    for index in range(snowObjectCount-1,-1,-1):
        imgObj = snowObjects[index] #每个元素为(imgId,x,y)
        if imgObj[2]>rows: #如果雪花的起始纵坐标已经超出背景图像的高度(即到达背景图像底部),则该雪花对象需进行失效处理
            del(snowObjects[index])
        else:
            imgSnow = snowShapesList[imgObj[0]]
            x,y = imgObj[1:] #取该雪花上次的位置
            x = x+random.randint(-1*horizontalMaxDistance,horizontalMaxDistance) #横坐标随机左右移动一定范围
            y = y+random.randint(1,verticalMaxDistance) #纵坐标随机下落一定范围
            snowObjects[index] = (imgObj[0],x,y) #更新雪花对象信息
            imgResult = addImgToLargeImg(imgSnow,imgResult,(x,y),180) #将所有雪花对象图像按照其位置融合到背景图像中
    return imgResult #返回融合图像

4.4、主函数

主函数读入背景图片,初始化雪花形状列表,然后循环自顶部产生一排新的雪花,并将所有雪花对象动态调整位置后融合到背景图像,每200毫秒循环一次,直至按ESC退出。

def main():
    global snowShapesList,snowObjects
    bg = readImgFile(r'f:\pic\Qomolangma2.jpg')
    initSnowShapes()
    rows,cols = bg.shape[:2]
    maxObjsPerRow = int(cols/100)

    while(True):
        snowObjects += generateOneRowSnows(cols,random.randint(0,maxObjsPerRow))
        result = putSnowObjectToImg(bg)
        cv2.imshow('result',result)
        ch = cv2.waitKey(200)
        if ch==27:break

4.5、其他说明

程序的执行直接直接main函数即可,另外本程序还用到了部分老猿经常用的公用函数,这部分函数包括readImgFile、addImgToLargeImg、rotationImg,其功能请参考《/article/details/111351901 OpenCV-Python图形图像处理:自用的一些工具函数功能及调用语法介绍》的介绍,根据介绍大家自行实现相关代码并不难。

五、主程序完整代码及雪花飘落效果

5.1、 主程序完整代码

# -*- coding: utf-8 -*-
import cv2,random
import numpy as np

from opencvPublic import addImgToLargeImg,readImgFile,rotationImg
snowShapesList = [] #雪花形状列表
snowObjects=[]  #图片中要显示的所有雪花对象


def initSnowShapes():
    """
    从文件中读入雪花图片,并进行不同尺度的缩小和不同角度的旋转从而生成不同的雪花形状,这些雪花形状保存到全局列表中snowShapesList
    """
    global snowShapesList
    imgSnow = readImgFile(r'f:\pic\snow.jpg')
    imgSnow = cv2.resize(imgSnow, None, fx=0.2, fy=0.2) #图片文件中的雪花比较大,需要缩小才能象自然的雪花形象
    minFactor,maxFactor = 50,100  #雪花大小在imgSnow的0.5-1倍之间变化

    for factor in range(minFactor,maxFactor,5): #每次增加5%大小
        f = factor*0.01
        imgSnowSize = cv2.resize(imgSnow, None, fx=f, fy=f)
        for ange in range(0,360,5):#雪花0-360之间旋转,每次旋转角度增加5°
            imgRotate = rotationImg(imgSnowSize,ange)
            snowShapesList.append(imgRotate)

def generateOneRowSnows(width,count):
    """
    产生一排雪花对象,每个雪花随机从snowShapesList取一个、横坐标位置随机、纵坐标初始为0
    :param width: 背景图像宽度
    :param count: 希望的雪花数
    :y:当前行对应的竖直坐标
    :return:一个包含产生的多个雪花对象信息的列表,每个列表的元素代表一个雪花对象,雪花对象包含三个信息,在snowShapesList的索引号、初始x坐标、初始y坐标(才生成固定为0)
    """
    global snowShapesList
    line = []
    picCount = len(snowShapesList)
    for loop in range(count):
        imgId = random.randint(0,picCount-1)
        xPos = random.randint(0,width-1)
        line.append((imgId,xPos,0))
    return line

def putSnowObjectToImg(img):
    """
    将所有snowObjects中的雪花对象融合放到图像img中,融合时y坐标随机下移一定高度,x坐标左右随机小范围内移动
    """
    global snowShapesList,snowObjects
    horizontalMaxDistance,verticalMaxDistance = 5,20 #水平方向左右漂移最大值和竖直方向下落最大值
    snowObjectCount = len(snowObjects)
    rows,cols = img.shape[0:2]
    imgResult = np.array(img)
    for index in range(snowObjectCount-1,-1,-1):
        imgObj = snowObjects[index] #每个元素为(imgId,x,y)
        if imgObj[2]>rows: #如果雪花的起始纵坐标已经超出背景图像的高度(即到达背景图像底部),则该雪花对象需进行失效处理
            del(snowObjects[index])
        else:
            imgSnow = snowShapesList[imgObj[0]]
            x,y = imgObj[1:] #取该雪花上次的位置
            x = x+random.randint(-1*horizontalMaxDistance,horizontalMaxDistance) #横坐标随机左右移动一定范围
            y = y+random.randint(1,verticalMaxDistance) #纵坐标随机下落一定范围
            snowObjects[index] = (imgObj[0],x,y) #更新雪花对象信息
            imgResult = addImgToLargeImg(imgSnow,imgResult,(x,y),180) #将所有雪花对象图像按照其位置融合到背景图像中
    return imgResult #返回融合图像


def main():
    global snowShapesList,snowObjects

    initSnowShapes()
    bg = readImgFile(r'f:\pic\Qomolangma2.jpg')
    rows,cols = bg.shape[:2]
    maxObjsPerRow = int(cols/100)

    while(True):
        snowObjects += generateOneRowSnows(cols,random.randint(0,maxObjsPerRow))
        result = putSnowObjectToImg(bg)
        cv2.imshow('result',result)
        ch = cv2.waitKey(200)
        if ch==27:break

main()

5.2、雪花飘落特效

python 图像热图掩码 python图像代码_图形图像处理_03

六、小结

本文介绍了通过OpenCV-Python以特定图像为背景制作雪花飘落特效的实现思路、关键函数功能以及主程序的完整代码。雪花飘落特效实际上属于图像融合的操作,只要掌握图像融合的基础知识以及设计后实现思路,实现起来还是比较快的,效果也挺不错。结合上面代码,大家还可以调整雪花的大小以及飘雪的密集程度。

有了以上内容的介绍,要实现视频加雪花特效就很容易了,只要将上述过程使用的关键步骤叠加Moviepy音视频处理合成就可以实现,老猿对本文的代码稍进行调整,然后写了个三行代码的函数就完成了相关处理,相信学习过Moviepy的都能很快实现,在此就不多介绍了,等过一阵子老猿再在Moviepy相关专栏发布相关实现。

以上实现过程需要注意:

  1. 雪花图片一般会比图片需要的效果大,怎么缩小到合适的大小需要多试一下,下面是才开始将原始图片只缩写一半之后的效果。
  2. python 图像热图掩码 python图像代码_OpenCV_04

  3. 可以看到该效果就不太让人满意。
  4. 控制好雪花左右移动以及下落的速度和幅度,太快、太慢以及幅度过大或过小都不太象在雪花飘落。