1.接口
1.1接口的概述(理解)
- 接口就是一种公共的规范标准,只要符合规范标准,大家都可以通用。
- Java中接口存在的两个意义
- 用来定义规范
- 用来做功能的拓展
1.2接口的特点(记忆)
- 接口用关键字interface修饰
public interface 接口名 {}
- 类实现接口用implements表示
public class 类名 implements 接口名 {}
- 接口不能实例化
我们可以创建接口的实现类对象使用 - 接口的子类
要么重写接口中的所有抽象方法
要么子类也是抽象类
1.3接口的成员特点(记忆)
- 成员特点
- 成员变量
只能是常量
默认修饰符:public static final - 构造方法
没有,因为接口主要是扩展功能的,而没有具体存在 - 成员方法
只能是抽象方法
默认修饰符:public abstract
关于接口中的方法,JDK8和JDK9中有一些新特性,后面再讲解
- 代码演示
- 接口
public interface Inter {
public static final int NUM = 10;
public abstract void show();
}
- 实现类
class InterImpl implements Inter{
public void method(){
// NUM = 20;
System.out.println(NUM);
}
public void show(){
}
}
- 测试类
public class TestInterface {
/*
成员变量: 只能是常量 系统会默认加入三个关键字
public static final
构造方法: 没有
成员方法: 只能是抽象方法, 系统会默认加入两个关键字
public abstract
*/
public static void main(String[] args) {
System.out.println(Inter.NUM);
}
}
1.4类和接口的关系(记忆)
- 类与类的关系
继承关系,只能单继承,但是可以多层继承 - 类与接口的关系
实现关系,可以单实现,也可以多实现,还可以在继承一个类的同时实现多个接口 - 接口与接口的关系
继承关系,可以单继承,也可以多继承
2.接口组成更新
2.1接口组成更新概述【理解】
- 常量
public static final - 抽象方法
public abstract - 默认方法(Java 8)
- 静态方法(Java 8)
- 私有方法(Java 9)
2.2接口中默认方法【应用】
- 格式
public default 返回值类型 方法名(参数列表) { } - 作用
解决接口升级的问题 - 范例
public default void show3() {
}
- 注意事项
- 默认方法不是抽象方法,所以不强制被重写。但是可以被重写,重写的时候去掉default关键字
- public可以省略,default不能省略
- 如果实现了多个接口,多个接口中存在相同的方法声明,子类就必须对该方法进行重写
2.3接口中静态方法【应用】
- 格式
public static 返回值类型 方法名(参数列表) { } - 范例
public static void show() {
}
- 注意事项
- 静态方法只能通过接口名调用,不能通过实现类名或者对象名调用
- public可以省略,static不能省略
2.4接口中私有方法【应用】
- 私有方法产生原因
Java 9中新增了带方法体的私有方法,这其实在Java 8中就埋下了伏笔:Java 8允许在接口中定义带方法体的默认方法和静态方法。这样可能就会引发一个问题:当两个默认方法或者静态方法中包含一段相同的代码实现时,程序必然考虑将这段实现代码抽取成一个共性方法,而这个共性方法是不需要让别人使用的,因此用私有给隐藏起来,这就是Java 9增加私有方法的必然性 - 定义格式
- 格式1
private 返回值类型 方法名(参数列表) { } - 范例1
private void show() {
}
- 格式2
private static 返回值类型 方法名(参数列表) { } - 范例2
private static void method() {
}
- 注意事项
- 默认方法可以调用私有的静态方法和非静态方法
- 静态方法只能调用私有的静态方法
3.多态
3.1多态的概述(记忆)
- 什么是多态
同一个对象,在不同时刻表现出来的不同形态 - 多态的前提
- 要有继承或实现关系
- 要有方法的重写
- 要有父类引用指向子类对象
- 代码演示
class Animal {
public void eat(){
System.out.println("动物吃饭");
}
}
class Cat extends Animal {
@Override
public void eat() {
System.out.println("猫吃鱼");
}
}
public class Test1Polymorphic {
/*
多态的前提:
1. 要有(继承 \ 实现)关系
2. 要有方法重写
3. 要有父类引用, 指向子类对象
*/
public static void main(String[] args) {
// 当前事物, 是一只猫
Cat c = new Cat();
// 当前事物, 是一只动物
Animal a = new Cat();
a.eat();
}
}
3.2多态中的成员访问特点(记忆)
- 成员访问特点
- 成员变量
编译看父类,运行看父类 - 成员方法
编译看父类,运行看子类
- 代码演示
class Fu {
int num = 10;
public void method(){
System.out.println("Fu.. method");
}
}
class Zi extends Fu {
int num = 20;
public void method(){
System.out.println("Zi.. method");
}
}
public class Test2Polymorpic {
/*
多态的成员访问特点:
成员变量: 编译看左边 (父类), 运行看左边 (父类)
成员方法: 编译看左边 (父类), 运行看右边 (子类)
*/
public static void main(String[] args) {
Fu f = new Zi();
System.out.println(f.num);
f.method();
}
}
3.3多态的好处和弊端(记忆)
- 好处
提高程序的扩展性。定义方法时候,使用父类型作为参数,在使用的时候,使用具体的子类型参与操作 - 弊端
不能使用子类的特有成员
3.4多态中的转型(应用)
- 向上转型
父类引用指向子类对象就是向上转型 - 向下转型
格式:子类型 对象名 = (子类型)父类引用; - 代码演示
class Fu {
public void show(){
System.out.println("Fu..show...");
}
}
class Zi extends Fu {
@Override
public void show() {
System.out.println("Zi..show...");
}
public void method(){
System.out.println("我是子类特有的方法, method");
}
}
public class Test3Polymorpic {
public static void main(String[] args) {
// 1. 向上转型 : 父类引用指向子类对象
Fu f = new Zi();
f.show();
// 多态的弊端: 不能调用子类特有的成员
// f.method();
// A: 直接创建子类对象
// B: 向下转型
// 2. 向下转型 : 从父类类型, 转换回子类类型
Zi z = (Zi) f;
z.method();
}
}
3.5多态中转型存在的风险和解决方案 (应用)
- 风险
如果被转的引用类型变量,对应的实际类型和目标类型不是同一种类型,那么在转换的时候就会出现ClassCastException - 解决方案
- 关键字
instanceof - 使用格式
变量名 instanceof 类型
通俗的理解:判断关键字左边的变量,是否是右边的类型,返回boolean类型结果
- 代码演示
abstract class Animal {
public abstract void eat();
}
class Dog extends Animal {
public void eat() {
System.out.println("狗吃肉");
}
public void watchHome(){
System.out.println("看家");
}
}
class Cat extends Animal {
public void eat() {
System.out.println("猫吃鱼");
}
}
public class Test4Polymorpic {
public static void main(String[] args) {
useAnimal(new Dog());
useAnimal(new Cat());
}
public static void useAnimal(Animal a){ // Animal a = new Dog();
// Animal a = new Cat();
a.eat();
//a.watchHome();
// Dog dog = (Dog) a;
// dog.watchHome(); // ClassCastException 类型转换异常
// 判断a变量记录的类型, 是否是Dog
if(a instanceof Dog){
Dog dog = (Dog) a;
dog.watchHome();
}
}
}
4.内部类
4.1 内部类的基本使用(理解)
- 内部类概念
- 在一个类中定义一个类。举例:在一个类A的内部定义一个类B,类B就被称为内部类
- 内部类定义格式
- 格式&举例:
/*
格式:
class 外部类名{
修饰符 class 内部类名{
}
}
*/
class Outer {
public class Inner {
}
}
- 内部类的访问特点
- 内部类可以直接访问外部类的成员,包括私有
- 外部类要访问内部类的成员,必须创建对象
- 示例代码:
/*
内部类访问特点:
内部类可以直接访问外部类的成员,包括私有
外部类要访问内部类的成员,必须创建对象
*/
public class Outer {
private int num = 10;
public class Inner {
public void show() {
System.out.println(num);
}
}
public void method() {
Inner i = new Inner();
i.show();
}
}
2.2 成员内部类(理解)
- 成员内部类的定义位置
- 在类中方法,跟成员变量是一个位置
- 外界创建成员内部类格式
- 格式:外部类名.内部类名 对象名 = 外部类对象.内部类对象;
- 举例:Outer.Inner oi = new Outer().new Inner();
- 私有成员内部类
- 将一个类,设计为内部类的目的,大多数都是不想让外界去访问,所以内部类的定义应该私有化,私有化之后,再提供一个可以让外界调用的方法,方法内部创建内部类对象并调用。
- 示例代码:
class Outer {
private int num = 10;
private class Inner {
public void show() {
System.out.println(num);
}
}
public void method() {
Inner i = new Inner();
i.show();
}
}
public class InnerDemo {
public static void main(String[] args) {
//Outer.Inner oi = new Outer().new Inner();
//oi.show();
Outer o = new Outer();
o.method();
}
}
- 静态成员内部类
- 静态成员内部类访问格式:外部类名.内部类名 对象名 = new 外部类名.内部类名();
- 静态成员内部类中的静态方法:外部类名.内部类名.方法名();
- 示例代码
class Outer {
static class Inner {
public void show(){
System.out.println("inner..show");
}
public static void method(){
System.out.println("inner..method");
}
}
}
public class Test3Innerclass {
/*
静态成员内部类演示
*/
public static void main(String[] args) {
// 外部类名.内部类名 对象名 = new 外部类名.内部类名();
Outer.Inner oi = new Outer.Inner();
oi.show();
Outer.Inner.method();
}
}
2.3 局部内部类(理解)
- 局部内部类定义位置
- 局部内部类是在方法中定义的类
- 局部内部类方式方式
- 局部内部类,外界是无法直接使用,需要在方法内部创建对象并使用
- 该类可以直接访问外部类的成员,也可以访问方法内的局部变量
- 示例代码
class Outer {
private int num = 10;
public void method() {
int num2 = 20;
class Inner {
public void show() {
System.out.println(num);
System.out.println(num2);
}
}
Inner i = new Inner();
i.show();
}
}
public class OuterDemo {
public static void main(String[] args) {
Outer o = new Outer();
o.method();
}
}
2.4 匿名内部类(应用)
- 匿名内部类的前提
- 存在一个类或者接口,这里的类可以是具体类也可以是抽象类
- 匿名内部类的格式
- 格式:new 类名 ( ) { 重写方法 } new 接口名 ( ) { 重写方法 }
- 举例:
new Inter(){
@Override
public void method(){}
}
- 匿名内部类的本质
- 本质:是一个继承了该类或者实现了该接口的子类匿名对象
- 匿名内部类的细节
- 匿名内部类可以通过多态的形式接受
Inter i = new Inter(){
@Override
public void method(){
}
}
- 匿名内部类直接调用方法
interface Inter{
void method();
}
class Test{
public static void main(String[] args){
new Inter(){
@Override
public void method(){
System.out.println("我是匿名内部类");
}
}.method(); // 直接调用方法
}
}
2.4 匿名内部类在开发中的使用(应用)
- 匿名内部类在开发中的使用
- 当发现某个方法需要,接口或抽象类的子类对象,我们就可以传递一个匿名内部类过去,来简化传统的代码
- 示例代码:
/*
游泳接口
*/
interface Swimming {
void swim();
}
public class TestSwimming {
public static void main(String[] args) {
goSwimming(new Swimming() {
@Override
public void swim() {
System.out.println("铁汁, 我们去游泳吧");
}
});
}
/**
* 使用接口的方法
*/
public static void goSwimming(Swimming swimming){
/*
Swimming swim = new Swimming() {
@Override
public void swim() {
System.out.println("铁汁, 我们去游泳吧");
}
}
*/
swimming.swim();
}
}
5.Lambda表达式
5.1体验Lambda表达式【理解】
- 代码演示
/*
游泳接口
*/
interface Swimming {
void swim();
}
public class TestSwimming {
public static void main(String[] args) {
// 通过匿名内部类实现
goSwimming(new Swimming() {
@Override
public void swim() {
System.out.println("铁汁, 我们去游泳吧");
}
});
/* 通过Lambda表达式实现
理解: 对于Lambda表达式, 对匿名内部类进行了优化
*/
goSwimming(() -> System.out.println("铁汁, 我们去游泳吧"));
}
/**
* 使用接口的方法
*/
public static void goSwimming(Swimming swimming) {
swimming.swim();
}
}
- 函数式编程思想概述
在数学中,函数就是有输入量、输出量的一套计算方案,也就是“拿数据做操作”
面向对象思想强调“必须通过对象的形式来做事情”
函数式思想则尽量忽略面向对象的复杂语法:“强调做什么,而不是以什么形式去做”
而我们要学习的Lambda表达式就是函数式思想的体现
5.2Lambda表达式的标准格式【理解】
- 格式:
(形式参数) -> {代码块}
- 形式参数:如果有多个参数,参数之间用逗号隔开;如果没有参数,留空即可
- ->:由英文中画线和大于符号组成,固定写法。代表指向动作
- 代码块:是我们具体要做的事情,也就是以前我们写的方法体内容
- 组成Lambda表达式的三要素:
- 形式参数,箭头,代码块
5.3Lambda表达式练习1【应用】
- Lambda表达式的使用前提
- 有一个接口
- 接口中有且仅有一个抽象方法
- 练习描述
无参无返回值抽象方法的练习 - 操作步骤
- 定义一个接口(Eatable),里面定义一个抽象方法:void eat();
- 定义一个测试类(EatableDemo),在测试类中提供两个方法
- 一个方法是:useEatable(Eatable e)
- 一个方法是主方法,在主方法中调用useEatable方法
- 示例代码
//接口
public interface Eatable {
void eat();
}
//实现类
public class EatableImpl implements Eatable {
@Override
public void eat() {
System.out.println("一天一苹果,医生远离我");
}
}
//测试类
public class EatableDemo {
public static void main(String[] args) {
//在主方法中调用useEatable方法
Eatable e = new EatableImpl();
useEatable(e);
//匿名内部类
useEatable(new Eatable() {
@Override
public void eat() {
System.out.println("一天一苹果,医生远离我");
}
});
//Lambda表达式
useEatable(() -> {
System.out.println("一天一苹果,医生远离我");
});
}
private static void useEatable(Eatable e) {
e.eat();
}
}
5.4Lambda表达式练习2【应用】
- 练习描述
有参无返回值抽象方法的练习 - 操作步骤
- 定义一个接口(Flyable),里面定义一个抽象方法:void fly(String s);
- 定义一个测试类(FlyableDemo),在测试类中提供两个方法
- 一个方法是:useFlyable(Flyable f)
- 一个方法是主方法,在主方法中调用useFlyable方法
- 示例代码
public interface Flyable {
void fly(String s);
}
public class FlyableDemo {
public static void main(String[] args) {
//在主方法中调用useFlyable方法
//匿名内部类
useFlyable(new Flyable() {
@Override
public void fly(String s) {
System.out.println(s);
System.out.println("飞机自驾游");
}
});
System.out.println("--------");
//Lambda
useFlyable((String s) -> {
System.out.println(s);
System.out.println("飞机自驾游");
});
}
private static void useFlyable(Flyable f) {
f.fly("风和日丽,晴空万里");
}
}
5.5Lambda表达式练习3【应用】
- 练习描述
有参有返回值抽象方法的练习 - 操作步骤
- 定义一个接口(Addable),里面定义一个抽象方法:int add(int x,int y);
- 定义一个测试类(AddableDemo),在测试类中提供两个方法
- 一个方法是:useAddable(Addable a)
- 一个方法是主方法,在主方法中调用useAddable方法
- 示例代码
public interface Addable {
int add(int x,int y);
}
public class AddableDemo {
public static void main(String[] args) {
//在主方法中调用useAddable方法
useAddable((int x,int y) -> {
return x + y;
});
}
private static void useAddable(Addable a) {
int sum = a.add(10, 20);
System.out.println(sum);
}
}
5.6Lambda表达式的省略模式【应用】
- 省略的规则
- 参数类型可以省略。但是有多个参数的情况下,不能只省略一个
- 如果参数有且仅有一个,那么小括号可以省略
- 如果代码块的语句只有一条,可以省略大括号和分号,和return关键字
- 代码演示
public interface Addable {
int add(int x, int y);
}
public interface Flyable {
void fly(String s);
}
public class LambdaDemo {
public static void main(String[] args) {
// useAddable((int x,int y) -> {
// return x + y;
// });
//参数的类型可以省略
useAddable((x, y) -> {
return x + y;
});
// useFlyable((String s) -> {
// System.out.println(s);
// });
//如果参数有且仅有一个,那么小括号可以省略
// useFlyable(s -> {
// System.out.println(s);
// });
//如果代码块的语句只有一条,可以省略大括号和分号
useFlyable(s -> System.out.println(s));
//如果代码块的语句只有一条,可以省略大括号和分号,如果有return,return也要省略掉
useAddable((x, y) -> x + y);
}
private static void useFlyable(Flyable f) {
f.fly("风和日丽,晴空万里");
}
private static void useAddable(Addable a) {
int sum = a.add(10, 20);
System.out.println(sum);
}
}
5.7Lambda表达式的使用前提【理解】
- 使用Lambda必须要有接口
- 并且要求接口中有且仅有一个抽象方法
5.8Lambda表达式和匿名内部类的区别【理解】
- 所需类型不同
- 匿名内部类:可以是接口,也可以是抽象类,还可以是具体类
- Lambda表达式:只能是接口
- 使用限制不同
- 如果接口中有且仅有一个抽象方法,可以使用Lambda表达式,也可以使用匿名内部类
- 如果接口中多于一个抽象方法,只能使用匿名内部类,而不能使用Lambda表达式
- 实现原理不同
- 匿名内部类:编译之后,产生一个单独的.class字节码文件
- Lambda表达式:编译之后,没有一个单独的.class字节码文件。对应的字节码会在运行的时候动态生成