• 🍦 参考文章:第R3周:LSTM-火灾温度预测
    🍖 作者:[K同学啊]

任务说明:该数据集提供了来自澳大利亚许多地点的大约 10 年的每日天气观测数据。

你需要做的是根据这些数据对RainTomorrow进行一个预测,这次任务任务与以往的不同,我增加了探索式数据分析(EDA),希望这部分内容可以帮助到大家。

🏡 我的环境:

● 语言环境:Python3.8
● 编译器:Jupyter Lab
● 深度学习框架:TensorFlow2.4.1
● 数据地址:🔗百度网盘

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation,Dropout
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.layers import Dropout
from sklearn.metrics import classification_report,confusion_matrix
from sklearn.metrics import r2_score
from sklearn.metrics import mean_absolute_error ,  mean_squared_error
data = pd.read_csv("C:/Users/jie liang/Downloads/weatherAUS.csv")
data.head()



Date

Location

MinTemp

MaxTemp

Rainfall

Evaporation

Sunshine

WindGustDir

WindGustSpeed

WindDir9am

...

Humidity9am

Humidity3pm

Pressure9am

Pressure3pm

Cloud9am

Cloud3pm

Temp9am

Temp3pm

RainToday

RainTomorrow

0

2008-12-01

Albury

13.4

22.9

0.6

NaN

NaN

W

44.0

W

...

71.0

22.0

1007.7

1007.1

8.0

NaN

16.9

21.8

No

No

1

2008-12-02

Albury

7.4

25.1

0.0

NaN

NaN

WNW

44.0

NNW

...

44.0

25.0

1010.6

1007.8

NaN

NaN

17.2

24.3

No

No

2

2008-12-03

Albury

12.9

25.7

0.0

NaN

NaN

WSW

46.0

W

...

38.0

30.0

1007.6

1008.7

NaN

2.0

21.0

23.2

No

No

3

2008-12-04

Albury

9.2

28.0

0.0

NaN

NaN

NE

24.0

SE

...

45.0

16.0

1017.6

1012.8

NaN

NaN

18.1

26.5

No

No

4

2008-12-05

Albury

17.5

32.3

1.0

NaN

NaN

W

41.0

ENE

...

82.0

33.0

1010.8

1006.0

7.0

8.0

17.8

29.7

No

No

5 rows × 23 columns

data.describe()



MinTemp

MaxTemp

Rainfall

Evaporation

Sunshine

WindGustSpeed

WindSpeed9am

WindSpeed3pm

Humidity9am

Humidity3pm

Pressure9am

Pressure3pm

Cloud9am

Cloud3pm

Temp9am

Temp3pm

count

143975.000000

144199.000000

142199.000000

82670.000000

75625.000000

135197.000000

143693.000000

142398.000000

142806.000000

140953.000000

130395.00000

130432.000000

89572.000000

86102.000000

143693.000000

141851.00000

mean

12.194034

23.221348

2.360918

5.468232

7.611178

40.035230

14.043426

18.662657

68.880831

51.539116

1017.64994

1015.255889

4.447461

4.509930

16.990631

21.68339

std

6.398495

7.119049

8.478060

4.193704

3.785483

13.607062

8.915375

8.809800

19.029164

20.795902

7.10653

7.037414

2.887159

2.720357

6.488753

6.93665

min

-8.500000

-4.800000

0.000000

0.000000

0.000000

6.000000

0.000000

0.000000

0.000000

0.000000

980.50000

977.100000

0.000000

0.000000

-7.200000

-5.40000

25%

7.600000

17.900000

0.000000

2.600000

4.800000

31.000000

7.000000

13.000000

57.000000

37.000000

1012.90000

1010.400000

1.000000

2.000000

12.300000

16.60000

50%

12.000000

22.600000

0.000000

4.800000

8.400000

39.000000

13.000000

19.000000

70.000000

52.000000

1017.60000

1015.200000

5.000000

5.000000

16.700000

21.10000

75%

16.900000

28.200000

0.800000

7.400000

10.600000

48.000000

19.000000

24.000000

83.000000

66.000000

1022.40000

1020.000000

7.000000

7.000000

21.600000

26.40000

max

33.900000

48.100000

371.000000

145.000000

14.500000

135.000000

130.000000

87.000000

100.000000

100.000000

1041.00000

1039.600000

9.000000

9.000000

40.200000

46.70000

# 查看数据类型
data.dtypes
Date              object
Location          object
MinTemp          float64
MaxTemp          float64
Rainfall         float64
Evaporation      float64
Sunshine         float64
WindGustDir       object
WindGustSpeed    float64
WindDir9am        object
WindDir3pm        object
WindSpeed9am     float64
WindSpeed3pm     float64
Humidity9am      float64
Humidity3pm      float64
Pressure9am      float64
Pressure3pm      float64
Cloud9am         float64
Cloud3pm         float64
Temp9am          float64
Temp3pm          float64
RainToday         object
RainTomorrow      object
dtype: object
data['Date']=pd.to_datetime(data['Date'])
data['Date']
0        2008-12-01
1        2008-12-02
2        2008-12-03
3        2008-12-04
4        2008-12-05
            ...    
145455   2017-06-21
145456   2017-06-22
145457   2017-06-23
145458   2017-06-24
145459   2017-06-25
Name: Date, Length: 145460, dtype: datetime64[ns]
data['year']  = data['Date'].dt.year
data['Month'] = data['Date'].dt.month
data['day']   = data['Date'].dt.day
data.head()



Date

Location

MinTemp

MaxTemp

Rainfall

Evaporation

Sunshine

WindGustDir

WindGustSpeed

WindDir9am

...

Pressure3pm

Cloud9am

Cloud3pm

Temp9am

Temp3pm

RainToday

RainTomorrow

year

Month

day

0

2008-12-01

Albury

13.4

22.9

0.6

NaN

NaN

W

44.0

W

...

1007.1

8.0

NaN

16.9

21.8

No

No

2008

12

1

1

2008-12-02

Albury

7.4

25.1

0.0

NaN

NaN

WNW

44.0

NNW

...

1007.8

NaN

NaN

17.2

24.3

No

No

2008

12

2

2

2008-12-03

Albury

12.9

25.7

0.0

NaN

NaN

WSW

46.0

W

...

1008.7

NaN

2.0

21.0

23.2

No

No

2008

12

3

3

2008-12-04

Albury

9.2

28.0

0.0

NaN

NaN

NE

24.0

SE

...

1012.8

NaN

NaN

18.1

26.5

No

No

2008

12

4

4

2008-12-05

Albury

17.5

32.3

1.0

NaN

NaN

W

41.0

ENE

...

1006.0

7.0

8.0

17.8

29.7

No

No

2008

12

5

5 rows × 26 columns

data.drop('Date', axis=1, inplace=True)
data.columns
Index(['Location', 'MinTemp', 'MaxTemp', 'Rainfall', 'Evaporation', 'Sunshine',
       'WindGustDir', 'WindGustSpeed', 'WindDir9am', 'WindDir3pm',
       'WindSpeed9am', 'WindSpeed3pm', 'Humidity9am', 'Humidity3pm',
       'Pressure9am', 'Pressure3pm', 'Cloud9am', 'Cloud3pm', 'Temp9am',
       'Temp3pm', 'RainToday', 'RainTomorrow', 'year', 'Month', 'day'],
      dtype='object')

探索性数据分析(EDA)

数据相关性探索

plt.figure(figsize=(15,13))

ax = sns.heatmap(data.corr(), square=True, annot=True, fmt='.2f')
ax.set_xticklabels(ax.get_xticklabels(), rotation=90)
plt.show()

python气象散度计算 python气温预测_数据

是否会下雨

sns.set(style="darkgrid")
plt.figure(figsize=(4,3))
sns.countplot(x='RainTomorrow',data=data)
<AxesSubplot:xlabel='RainTomorrow', ylabel='count'>

python气象散度计算 python气温预测_python_02

plt.figure(figsize=(4,3))
sns.countplot(x='RainToday',data=data)
<AxesSubplot:xlabel='RainToday', ylabel='count'>

python气象散度计算 python气温预测_tensorflow_03

x=pd.crosstab(data['RainTomorrow'],data['RainToday'])
x



RainToday

No

Yes

RainTomorrow

No

92728

16858

Yes

16604

14597

y=x/x.transpose().sum().values.reshape(2,1)*100
y



RainToday

No

Yes

RainTomorrow

No

84.616648

15.383352

Yes

53.216243

46.783757

● 如果今天不下雨,那么明天下雨的机会 = 15%

● 如果今天下雨明天下雨的机会 = 46%

y.plot(kind="bar",figsize=(4,3),color=['#006666','#d279a6']);

python气象散度计算 python气温预测_数据_04

地理位置与下雨的关系

x=pd.crosstab(data['Location'],data['RainToday']) 
# 获取每个城市下雨天数和非下雨天数的百分比
y=x/x.transpose().sum().values.reshape((-1, 1))*100
# 按每个城市的雨天百分比排序
y=y.sort_values(by='Yes',ascending=True )

color=['#cc6699','#006699','#006666','#862d86','#ff9966'  ]
y.Yes.plot(kind="barh",figsize=(15,20),color=color)
<AxesSubplot:ylabel='Location'>

python气象散度计算 python气温预测_tensorflow_05

湿度和压力对下雨的影响

data.columns
Index(['Location', 'MinTemp', 'MaxTemp', 'Rainfall', 'Evaporation', 'Sunshine',
       'WindGustDir', 'WindGustSpeed', 'WindDir9am', 'WindDir3pm',
       'WindSpeed9am', 'WindSpeed3pm', 'Humidity9am', 'Humidity3pm',
       'Pressure9am', 'Pressure3pm', 'Cloud9am', 'Cloud3pm', 'Temp9am',
       'Temp3pm', 'RainToday', 'RainTomorrow', 'year', 'Month', 'day'],
      dtype='object')
plt.figure(figsize=(8,6))
sns.scatterplot(data=data,x='Pressure9am',y='Pressure3pm',hue='RainTomorrow');

python气象散度计算 python气温预测_tensorflow_06

plt.figure(figsize=(8,6))
sns.scatterplot(data=data,x='Humidity9am',y='Humidity3pm',hue='RainTomorrow');

python气象散度计算 python气温预测_python_07

低压与高湿度会增加第二天下雨的概率,尤其是下午 3 点的空气湿度。

气温对下雨的影响

plt.figure(figsize=(8,6))
sns.scatterplot(x='MaxTemp', y='MinTemp', data=data, hue='RainTomorrow');

python气象散度计算 python气温预测_tensorflow_08

结论:当一天的最高气温和最低气温接近时,第二天下雨的概率会增加。

数据预处理

数据预处理

# 每列中缺失数据的百分比
data.isnull().sum()/data.shape[0]*100
Location          0.000000
MinTemp           1.020899
MaxTemp           0.866905
Rainfall          2.241853
Evaporation      43.166506
Sunshine         48.009762
WindGustDir       7.098859
WindGustSpeed     7.055548
WindDir9am        7.263853
WindDir3pm        2.906641
WindSpeed9am      1.214767
WindSpeed3pm      2.105046
Humidity9am       1.824557
Humidity3pm       3.098446
Pressure9am      10.356799
Pressure3pm      10.331363
Cloud9am         38.421559
Cloud3pm         40.807095
Temp9am           1.214767
Temp3pm           2.481094
RainToday         2.241853
RainTomorrow      2.245978
year              0.000000
Month             0.000000
day               0.000000
dtype: float64
# 在该列中随机选择数进行填充
lst=['Evaporation','Sunshine','Cloud9am','Cloud3pm']
for col in lst:
    fill_list = data[col].dropna()
    data[col] = data[col].fillna(pd.Series(np.random.choice(fill_list, size=len(data.index))))
s = (data.dtypes == "object")
object_cols = list(s[s].index)
object_cols
['Location',
 'WindGustDir',
 'WindDir9am',
 'WindDir3pm',
 'RainToday',
 'RainTomorrow']
# inplace=True:直接修改原对象,不创建副本
# data[i].mode()[0] 返回频率出现最高的选项,众数

for i in object_cols:
    data[i].fillna(data[i].mode()[0], inplace=True)
t = (data.dtypes == "float64")
num_cols = list(t[t].index)
num_cols
['MinTemp',
 'MaxTemp',
 'Rainfall',
 'Evaporation',
 'Sunshine',
 'WindGustSpeed',
 'WindSpeed9am',
 'WindSpeed3pm',
 'Humidity9am',
 'Humidity3pm',
 'Pressure9am',
 'Pressure3pm',
 'Cloud9am',
 'Cloud3pm',
 'Temp9am',
 'Temp3pm']
# .median(), 中位数
for i in num_cols:
    data[i].fillna(data[i].median(), inplace=True)
data.isnull().sum()
Location         0
MinTemp          0
MaxTemp          0
Rainfall         0
Evaporation      0
Sunshine         0
WindGustDir      0
WindGustSpeed    0
WindDir9am       0
WindDir3pm       0
WindSpeed9am     0
WindSpeed3pm     0
Humidity9am      0
Humidity3pm      0
Pressure9am      0
Pressure3pm      0
Cloud9am         0
Cloud3pm         0
Temp9am          0
Temp3pm          0
RainToday        0
RainTomorrow     0
year             0
Month            0
day              0
dtype: int64

构建数据集

在处理数据标签时,机器学习或深度学习能识别的标签都是数字类型,分类时用0,1,2…,预测时是浮点数,而大多数数据起始时都不是这种类型,像:“男”和“女”,“是”和“否”,“猫”或“狗”或“人”这类的比较多,因此需要
将它们转换为数字类型。

LabelEncoder:将n个类别编码为0~n-1之间的整数(包含0和n-1),以下是使用LabelEncoder转换标签的实例。

from sklearn.preprocessing import LabelEncoder

label_encoder = LabelEncoder()
for i in object_cols:
    data[i] = label_encoder.fit_transform(data[i])
from sklearn.preprocessing import LabelEncoder

label_encoder = LabelEncoder()
for i in object_cols:
    data[i] = label_encoder.fit_transform(data[i])
X = data.drop(['RainTomorrow','day'],axis=1).values
y = data['RainTomorrow'].values
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.25,random_state=101)
scaler = MinMaxScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test  = scaler.transform(X_test)

预测是否下雨

搭建神经网络

from tensorflow.keras.optimizers import Adam

model = Sequential()
model.add(Dense(units=24,activation='tanh',))
model.add(Dense(units=18,activation='tanh'))
model.add(Dense(units=23,activation='tanh'))
model.add(Dropout(0.5))
model.add(Dense(units=12,activation='tanh'))
model.add(Dropout(0.2))
model.add(Dense(units=1,activation='sigmoid'))

optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4)

model.compile(loss='binary_crossentropy',
              optimizer=optimizer,
              metrics="accuracy")
early_stop = EarlyStopping(monitor='val_loss', 
                           mode='min',
                           min_delta=0.001, 
                           verbose=1, 
                           patience=25,
                           restore_best_weights=True)

模型训练

model.fit(x=X_train, 
          y=y_train, 
          validation_data=(X_test, y_test), verbose=1,
          callbacks=[early_stop],
          epochs =30,
          batch_size = 32
)
Epoch 1/30
3410/3410 [==============================] - 3s 916us/step - loss: 0.3752 - accuracy: 0.8400 - val_loss: 0.3708 - val_accuracy: 0.8384
Epoch 2/30
3410/3410 [==============================] - 3s 905us/step - loss: 0.3750 - accuracy: 0.8403 - val_loss: 0.3680 - val_accuracy: 0.8405
Epoch 3/30
3410/3410 [==============================] - 3s 906us/step - loss: 0.3750 - accuracy: 0.8403 - val_loss: 0.3678 - val_accuracy: 0.8407
Epoch 4/30
3410/3410 [==============================] - 3s 893us/step - loss: 0.3748 - accuracy: 0.8404 - val_loss: 0.3678 - val_accuracy: 0.8406
Epoch 5/30
3410/3410 [==============================] - 3s 894us/step - loss: 0.3743 - accuracy: 0.8401 - val_loss: 0.3684 - val_accuracy: 0.8390
Epoch 6/30
3410/3410 [==============================] - 3s 895us/step - loss: 0.3737 - accuracy: 0.8410 - val_loss: 0.3677 - val_accuracy: 0.8400
Epoch 7/30
3410/3410 [==============================] - 3s 887us/step - loss: 0.3737 - accuracy: 0.8412 - val_loss: 0.3698 - val_accuracy: 0.8400
Epoch 8/30
3410/3410 [==============================] - 3s 896us/step - loss: 0.3734 - accuracy: 0.8411 - val_loss: 0.3677 - val_accuracy: 0.8405
Epoch 9/30
3410/3410 [==============================] - 4s 1ms/step - loss: 0.3735 - accuracy: 0.8402 - val_loss: 0.3665 - val_accuracy: 0.8406
Epoch 10/30
3410/3410 [==============================] - 4s 1ms/step - loss: 0.3723 - accuracy: 0.8407 - val_loss: 0.3666 - val_accuracy: 0.8410
Epoch 11/30
3410/3410 [==============================] - 4s 1ms/step - loss: 0.3729 - accuracy: 0.8403 - val_loss: 0.3665 - val_accuracy: 0.8411
Epoch 12/30
3410/3410 [==============================] - 4s 1ms/step - loss: 0.3717 - accuracy: 0.8415 - val_loss: 0.3660 - val_accuracy: 0.8413
Epoch 13/30
3410/3410 [==============================] - 5s 1ms/step - loss: 0.3716 - accuracy: 0.8413 - val_loss: 0.3673 - val_accuracy: 0.8391
Epoch 14/30
3410/3410 [==============================] - 4s 1ms/step - loss: 0.3720 - accuracy: 0.8411 - val_loss: 0.3656 - val_accuracy: 0.8418
Epoch 15/30
3410/3410 [==============================] - 4s 1ms/step - loss: 0.3719 - accuracy: 0.8406 - val_loss: 0.3671 - val_accuracy: 0.8409
Epoch 16/30
3410/3410 [==============================] - 4s 1ms/step - loss: 0.3712 - accuracy: 0.8411 - val_loss: 0.3657 - val_accuracy: 0.8410
Epoch 17/30
3410/3410 [==============================] - 4s 1ms/step - loss: 0.3714 - accuracy: 0.8413 - val_loss: 0.3651 - val_accuracy: 0.8416
Epoch 18/30
3410/3410 [==============================] - 4s 1ms/step - loss: 0.3712 - accuracy: 0.8421 - val_loss: 0.3685 - val_accuracy: 0.8403
Epoch 19/30
3410/3410 [==============================] - 4s 1ms/step - loss: 0.3712 - accuracy: 0.8413 - val_loss: 0.3646 - val_accuracy: 0.8415
Epoch 20/30
3410/3410 [==============================] - 4s 1ms/step - loss: 0.3703 - accuracy: 0.8419 - val_loss: 0.3664 - val_accuracy: 0.8414
Epoch 21/30
3410/3410 [==============================] - 4s 1ms/step - loss: 0.3707 - accuracy: 0.8417 - val_loss: 0.3664 - val_accuracy: 0.8397
Epoch 22/30
3410/3410 [==============================] - 4s 1ms/step - loss: 0.3703 - accuracy: 0.8415 - val_loss: 0.3644 - val_accuracy: 0.8420
Epoch 23/30
3410/3410 [==============================] - 4s 1ms/step - loss: 0.3704 - accuracy: 0.8420 - val_loss: 0.3655 - val_accuracy: 0.8417
Epoch 24/30
3410/3410 [==============================] - 4s 1ms/step - loss: 0.3707 - accuracy: 0.8418 - val_loss: 0.3638 - val_accuracy: 0.8419
Epoch 25/30
3410/3410 [==============================] - 4s 1ms/step - loss: 0.3692 - accuracy: 0.8428 - val_loss: 0.3646 - val_accuracy: 0.8418
Epoch 26/30
3410/3410 [==============================] - 4s 1ms/step - loss: 0.3689 - accuracy: 0.8425 - val_loss: 0.3636 - val_accuracy: 0.8422
Epoch 27/30
3410/3410 [==============================] - 4s 1ms/step - loss: 0.3690 - accuracy: 0.8420 - val_loss: 0.3636 - val_accuracy: 0.8420
Epoch 28/30
3410/3410 [==============================] - 4s 1ms/step - loss: 0.3692 - accuracy: 0.8427 - val_loss: 0.3637 - val_accuracy: 0.8420
Epoch 29/30
3410/3410 [==============================] - 4s 1ms/step - loss: 0.3697 - accuracy: 0.8416 - val_loss: 0.3639 - val_accuracy: 0.8416
Epoch 30/30
3410/3410 [==============================] - 4s 1ms/step - loss: 0.3686 - accuracy: 0.8424 - val_loss: 0.3633 - val_accuracy: 0.8425





<keras.callbacks.History at 0x21de75b4400>

结果可视化

import matplotlib.pyplot as plt

acc = model.history.history['accuracy']
val_acc = model.history.history['val_accuracy']

loss = model.history.history['loss']
val_loss = model.history.history['val_loss']

epochs_range = range(30)

plt.figure(figsize=(14, 4))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

python气象散度计算 python气温预测_python气象散度计算_09