去年笔者和一个硬件厂商调试打印机的时候遇到这个一个问题,厂商需要打印报文中传输报文的长度标志,按大端序,将长度的高位和低位放到两个字节里,笔者由于基础知识不牢固,在这个问题上浪费了较长时间,今年开始写博客了,就记录一下这个问题。笔者使用了int来记录长度,其实应该用两个字节的short来记录,这样更简单。

大小端序

要想拿int的高低位字节,首先要理解大小端序。这里以int举例,int有四个字节A,B,C,D。那么内存里存储int类型占用了四个字节的位置,这四个字节在内存中肯定占用了连续递增的四个地址,大小端序指得就是这四个字节在这四个地址中是顺序排列的还是逆序排列的。如果是顺序排列的,那么我们叫大端序,如果是逆序排列的,就叫小端序。

再拿网络传输这个int值来举例,甲向乙传输数据,乙拿到甲传的字节数组以后要知道怎么拼接这四个字节,如果甲是按顺序传输这四个字节,而乙按逆序拼接四个字节,那么双方得到的int值肯定是不一样的。那么怎么解决这个问题呢?方法就是双方协定一个顺序,比如按大端序传输,甲将四个字节按大端序传输给乙,乙再按大端序拼接字节,这样双方得到的int值就是一样的了。

总结一下就是,大端序,高位字节在前,低位字节在后。小端序,高位字节在后,低位字节在前。一般交互都是默认大端序。

获取int的高低位字节数组

这里给出了大小端序的int和字节数组互转函数

/**
     * 小端序 字节数组转int
     *
     * @param bytes
     * @return
     */
    public static int littleEndian(byte[] bytes) {
        return (bytes[0]&0XFF)
                | ((bytes[1]&0XFF) << 8)
                | ((bytes[2]&0XFF) << 16)
                | ((bytes[3]&0XFF) << 24);
    }

    /**
     * 大端序 字节数组转int
     *
     * @param bytes
     * @return
     */
    public static int bigEndian(byte[] bytes) {
        //System.out.println(String.format("%32s", Integer.toBinaryString(bytes[3]&0XFF)).replaceAll("\\s", "0"));
        //System.out.println(String.format("%32s", Integer.toBinaryString(((bytes[2]&0XFF) << 8)).replaceAll("\\s", "0")));
        //System.out.println(String.format("%32s", Integer.toBinaryString(((bytes[1]&0XFF) << 16)).replaceAll("\\s", "0")));
        //System.out.println(String.format("%32s", Integer.toBinaryString(((bytes[0]&0XFF) << 24)).replaceAll("\\s", "0")));

        return (bytes[3]&0XFF)
                | ((bytes[2]&0XFF) << 8)
                | ((bytes[1]&0XFF) << 16)
                | ((bytes[0]&0XFF) << 24);
    }

    /**
     * 大端序 int转字节数组
     *
     * @param i
     * @return
     */
    public static byte[] bigEndian(int i) {
        int byte1 = i & 0XFF;
        int byte2 = (i & 0XFFFF) >>> 8;
        int byte3 = (i & 0XFFFFFF) >>> 16;
        int byte4 = (i & 0XFFFFFFFF) >>> 24;
        return new byte[]{(byte) byte4, (byte) byte3, (byte) byte2, (byte) byte1};
    }

    /**
     * 小端序 int转字节数组
     *
     * @param i
     * @return
     */
    public static byte[] littleEndian(int i) {
        int byte1 = i & 0XFF;
        int byte2 = (i & 0XFF << 8) >> 8;
        int byte3 = (i & 0XFF << 16) >> 16;
        int byte4 = (i & 0XFF << 24) >> 24;
        return new byte[]{(byte) byte1, (byte) byte2, (byte) byte3, (byte) byte4};
    }


    public static void main(String[] args) {
        int a = new Random().nextInt();
        String s = String.format("%32s", Integer.toBinaryString(a)).replaceAll("\\s", "0");
        System.out.println("原数据:             " + s.substring(0, 8) + " " + s.substring(8, 16) + " " + s.substring(16, 24) + " " + s.substring(24, 32) + " ");

        byte[] bytes = bigEndian(a);
        System.out.printf("大端序-int转字节数组:");
        for (int i = 0; i < bytes.length; i++) {
            System.out.print(String.format("%8s", Integer.toBinaryString(bytes[i] & 0XFF)).replaceAll("\\s", "0") + " ");
        }
        System.out.println();
        System.out.println("大端序-字节数组转int验证:" + (bigEndian(bytes) == a));

        byte[] bytes2 = littleEndian(a);
        System.out.printf("小端序-int转字节数组:");
        for (int i = 0; i < bytes2.length; i++) {
            System.out.print(String.format("%8s", Integer.toBinaryString(bytes2[i] & 0XFF)).replaceAll("\\s", "0") + " ");
        }
        System.out.println();
        System.out.println("小端序-字节数组转int验证:" + (littleEndian(bytes2) == a));
    }
}

原数据:             10010100 11111001 01101110 00100011 
大端序-int转字节数组:10010100 11111001 01101110 00100011 
大端序-字节数组转int验证:true
小端序-int转字节数组:00100011 01101110 11111001 10010100 
小端序-字节数组转int验证:true