导读

1. 程序 = 数据结构 + 算法

2. 学习:刚开始看时肯定会有些不清楚,你学习数据结构时找一本经典的数据结构书,开始时的实现肯定会有困难,那么请 google 下会有很多优秀的数据结构源码的。你可以模仿这些优秀的源码写。请记住一定要开始时自己实现,当被卡住了就看一下源码,看看自己被卡在了什么地方,引起注意以便下次自己会写。当你把书上的数据结构源码写了一遍之后,你已经超过了你绝大部分的同学。

3. 运用: 这时你就需要对这些数据结构加以运用,你可以在 google 上搜索“某个数据结构 + ACM”,你就会看到一些题目,这些题目都是数据结构的运用,甚至有这些数据结构的变形。每种数据结构做5题左右。期间你还会遇到程序另一重要的方面算法,有不会的就 google。 期间可以学到的数据结构和算法做小软件玩儿,例如压缩软件,五子棋之类的。

4. 深入: 当你完成了第三步你已经是你们学校的小高手了。这时看你的方向如果这时发现自己喜欢 ACM 的话就去搞 ACM,如果不感兴趣,就找自己感兴趣的技术学习一下,做几个完整的项目,例如写个编译器,或者实现一个简单的编程语言。喜欢的可以关注的我公众号Java小瓜哥的分享平台

5,专注很重要,学习是自己每天亲力亲为的事情。与任何是没有关系,重点在于你的坚持与否。

一、栈(stack)

栈(stack)是限制插入和删除只能在一个位置上进行的表,该位置是表的末端,叫做栈顶(top)它是后进先出(LIFO)的。对栈的基本操作只有push(进栈)和pop(出栈)两种,前者相当于插入,后者相当于删除最后的元素。

java 打开wps应用_结点

二、队列(queue)

队列是一种特殊的线性表,特殊之处在于它只允许在表的前端(front)进行删除操作。而表的后端(rear)进行插入操作,和栈一样,队列是一种操作受限制的线性表,进行插入操作的端称为队尾,进行删除操作的端称为队头。

java 打开wps应用_结点_02

三、链表(Link)

链表是一种数据结构,和数组同级。比如,java中我们使用的ArrayList,其实现原理是数组。而LinkedList的实现原理就是链表了。链表在进行循环遍历时效率不高,但是插入和删除时优势明显。

java 打开wps应用_电脑软件打开方式被Java占满_03

四、散列表(Hash Table)

java 打开wps应用_java 打开wps应用_04

五、排序二叉树

插入操作

删除操作

查询操作

java 打开wps应用_电脑软件打开方式被Java占满_05

插入操作

首先要从根节点开始往下找到自己要插入的位置(即新节点的父节点);具体流程是:新节点与

当前节点比较,如果相同则表示已经存在且不能再重复插入;如果小于当前节点,则到左子树中

寻找,如果左子树为空则当前节点为要找的父节点,新节点插入到当前节点的左子树即可;如果

大于当前节点,则到右子树中寻找,如果右子树为空则当前节点为要找的父节点,新节点插入到

当前节点的右子树即可。(如上图 )

java 打开wps应用_java 打开wps应用_06

删除操作(如上图所示)

主要分为三种情况,即要删除的节点无子节点,要删除的节点只有一个子节点,要删除

的节点有两个子节点。

1. 对于要删除的节点无子节点可以直接删除,即让其父节点将该子节点置空即可。

2. 对于要删除的节点只有一个子节点,则替换要删除的节点为其子节点。

3. 对于要删除的节点有两个子节点,则首先找该节点的替换节点(即右子树中最小的节点),

接着替换要删除的节点为替换节点,然后删除替换节点

查询操作

查找操作的主要流程为:先和根节点比较,如果相同就返回,如果小于根节点则到左子树中

递归查找,如果大于根节点则到右子树中递归查找。因此在排序二叉树中可以很容易获取最

大(最右最深子节点)和最小(最左最深子节点)值。

六、红黑树

R-B Tree,全称是 Red-Black Tree,又称为“红黑树”,它一种特殊的二叉查找树。红黑树的每

个节点上都有存储位表示节点的颜色,可以是红(Red)或黑(Black)。

红黑树的特性

(1)每个节点或者是黑色,或者是红色。

(2)根节点是黑色。

(3)每个叶子节点(NIL)是黑色。 [注意:这里叶子节点,是指为空(NIL 或NULL)的叶子节点!]

(4)如果一个节点是红色的,则它的子节点必须是黑色的。

(5)从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。

左旋

对 x 进行左旋,意味着,将“x 的右孩子”设为“x 的父亲节点”;即,将 x 变成了一个左节点(x

成了为 z 的左孩子)!。 因此,左旋中的“左”,意味着“被旋转的节点将变成一个左节点”。

java 打开wps应用_电脑软件打开方式被Java占满_07

右旋

对 x 进行右旋,意味着,将“x 的左孩子”设为“x 的父亲节点”;即,将 x 变成了一个右节点(x

成了为 y 的右孩子)! 因此,右旋中的“右”,意味着“被旋转的节点将变成一个右节点”。

java 打开wps应用_结点_08

添加

第一步: 将红黑树当作一颗二叉查找树,将节点插入。

第二步:将插入的节点着色为"红色"。

根据被插入节点的父节点的情况,可以将"当节点 z 被着色为红色节点,并插入二叉树"划分为三

种情况来处理。

① 情况说明:被插入的节点是根节点。

处理方法:直接把此节点涂为黑色。

② 情况说明:被插入的节点的父节点是黑色。

处理方法:什么也不需要做。节点被插入后,仍然是红黑树。

③ 情况说明:被插入的节点的父节点是红色。这种情况下,被插入节点是一定存在非空祖父节点

的;进一步的讲,被插入节点也一定存在叔叔节点(即使叔叔节点为空,我们也视之为存在,空节

点本身就是黑色节点)。理解这点之后,我们依据"叔叔节点的情况",将这种情况进一步划分为 3

种情况(Case)。

java 打开wps应用_电脑软件打开方式被Java占满_09

第三步: 通过一系列的旋转或着色等操作,使之重新成为一颗红黑树

删除

第一步:将红黑树当作一颗二叉查找树,将节点删除。

这和"删除常规二叉查找树中删除节点的方法是一样的"。分 3 种情况:

① 被删除节点没有儿子,即为叶节点。那么,直接将该节点删除就 OK 了。

② 被删除节点只有一个儿子。那么,直接删除该节点,并用该节点的唯一子节点顶替它的位置。

③ 被删除节点有两个儿子。那么,先找出它的后继节点;然后把“它的后继节点的内容”复制给

“该节点的内容”;之后,删除“它的后继节点”。

第二步:通过"旋转和重新着色"等一系列来修正该树,使之重新成为一棵红黑树。

因为"第一步"中删除节点之后,可能会违背红黑树的特性。所以需要通过"旋转和重新着色"来修正

该树,使之重新成为一棵红黑树。

选择重着色 3 种情况。

① 情况说明:x 是“红+黑”节点。

处理方法:直接把 x 设为黑色,结束。此时红黑树性质全部恢复。

② 情况说明:x 是“黑+黑”节点,且 x 是根。

处理方法:什么都不做,结束。此时红黑树性质全部恢复。

③ 情况说明:x 是“黑+黑”节点,且 x 不是根。

处理方法:这种情况又可以划分为 4 种子情况。这 4 种子情况如下表所示:

java 打开wps应用_结点_10

七、B-TREE

B-tree 又叫平衡多路查找树。一棵 m 阶的 B-tree (m 叉树)的特性如下(其中 ceil(x)是一个取上限

的函数):

1. 树中每个结点至多有 m 个孩子;

2. 除根结点和叶子结点外,其它每个结点至少有有 ceil(m / 2)个孩子;

3. 若根结点不是叶子结点,则至少有 2 个孩子(特殊情况:没有孩子的根结点,即根结点为叶子

结点,整棵树只有一个根节点);

4. 所有叶子结点都出现在同一层,叶子结点不包含任何关键字信息(可以看做是外部结点或查询

失败的结点,实际上这些结点不存在,指向这些结点的指针都为 null);

5. 每个非终端结点中包含有 n 个关键字信息: (n,P0,K1,P1,K2,P2,......,Kn,Pn)。其

中:

a) Ki (i=1...n)为关键字,且关键字按顺序排序 K(i-1)< Ki。

b) Pi 为指向子树根的接点,且指针 P(i-1)指向子树种所有结点的关键字均小于 Ki,但都大于 K(i-

1)。

c) 关键字的个数 n 必须满足: ceil(m / 2)-1 <= n <= m-1。

java 打开wps应用_子树_11

一棵 m 阶的 B+tree 和 m 阶的 B-tree 的差异在于:

1.有 n 棵子树的结点中含有 n 个关键字; (B-tree 是 n 棵子树有 n-1 个关键字)

2.所有的叶子结点中包含了全部关键字的信息,及指向含有这些关键字记录的指针,且叶子结点本

身依关键字的大小自小而大的顺序链接。 (B-tree 的叶子节点并没有包括全部需要查找的信息)

3.所有的非终端结点可以看成是索引部分,结点中仅含有其子树根结点中最大(或最小)关键字。

(B-tree 的非终节点也包含需要查找的有效信息)

java 打开wps应用_结点_12