西南科技大学生命科学与工程学院周海廷制作 西南科技大学生命科学与工程学院周海廷制作 正态分布数据 置信区间 * * 一、总体均值的区间估计 (一)总体方差未知 例:为研究某种汽车轮胎的磨损情况,随机选取16只轮胎,每只轮胎行驶到磨坏为止。记录所行驶的里程(以公里计)如下: * * 41250 40187 43175 41010 39265 41872 42654 41287 38970 40200 42550 41095 40680 43500 39775 40400 假设汽车轮胎的行驶里程服从正态分布,均值、方差未知。试求总体均值μ的置信度为0.95的置信区间。 孝感学院生命科学技术学院生物统计学课程组制作 * * 孝感学院生命科学技术学院生物统计学课程组制作 步骤: 1.在单元格A1中输入“样本数据”,在单元格B4中输入“指标名称”,在单元格C4中输入“指标数值”,并在单元格A2:A17中输入样本数据。 2.在单元格B5中输入“样本容量”,在单元格C5中输入“16”。 3.计算样本平均行驶里程。在单元格B6中输入“样本均值”,在单元格C6中输入公式:“=AVERAGE(A2,A17)”,回车后得到的结果为41116.875。 4.计算样本标准差。在单元格B7中输入“样本标准差”,在单元格C7中输入公式:“=STDEV(A2,A17)”,回车后得到的结果为1346.842771。 5.计算抽样平均误差。在单元格B8中输入“抽样平均误差”,在单元格C8中输入公式:“=C7/SQRT(C5)” ,回车后得到的结果为336.7106928。 * * 孝感学院生命科学技术学院生物统计学课程组制作 6.在单元格B9中输入“置信度”,在单元格C9中输入“0.95”。 7.在单元格B10中输入“自由度”,在单元格C10中输入“15”。 8.在单元格B11中输入“t分布的双侧分位数”,在单元格C11中输入公式:“ =TINV(1-C9,C10)”,回车后得到α=0.05的t分布的双侧分位数t=2.1315。 9.计算允许误差。在单元格B12中输入“允许误差”,在单元格C12中输入公式:“=C11*C8”,回车后得到的结果为717.6822943。 10.计算置信区间下限。在单元格B13中输入“置信下限”,在单元格C13中输入置信区间下限公式:“=C6-C12”,回车后得到的结果为40399.19271。 * * 孝感学院生命科学技术学院生物统计学课程组制作 11.计算置信区间上限。在单元格B14中输入“置信上限”,在单元格C14中输入置信区间上限公式:“=C6+C12”,回车后得到的结果为41834.55729。 结果如下图所示: * * 孝感学院生命科学技术学院生物统计学课程组制作 (二)总体方差已知 仍以上例为例,假设汽车轮胎的行驶里程服从正态总体,方差为10002,试求总体均值μ的置信度为0.95的置信区间。 1 、2、3同上例。 4.在单元格B7中输入“标准差”,在单元格C7中输入“1000”。 5.计算抽样平均误差。在单元格B8中输入“抽样平均误差”,在单元格C8中输入公式:“=C7/SQRT(C5)” ,回车后得到的结果为250。 6.在单元格B9中输入“置信度”,在单元格C9中输入“0.95”。 7. 在单元格B10中输入“自由度”,在单元格C10中输入“15”。 8. 在单元格B11中输入“标准正态分布的双侧分位数”,在单元格C11中输入公式:“=NORMSINV(0.975)”,回车后得到α=0.05的标准正态分布的双侧分位数Z0.05/2=1.96。 * * 孝感学院生命科学技术学院生物统计学课程组制作 9.计算允许误差。在单元格B12中输入“允许误差”,在单元格C12中输入公式:“=C11*C8”,回车后得到的结果为490。 10.计算置信区间下限。在单元格B13中输入“置信下限”,在单元格C13中输入置信区间下限公式:“=C6-C12”,回车后得到的结果为40626.875。 11.计算置信区间上限。在单元格B14中输入“置信上限”,在单元格C14中输入置信区间上限公式:“=C6+C12,回车后得到的结果为41606.875。 结果如下图所示: * * 孝感学院生命科学技术学院生物统计学课程组制作 * * 孝感学院生命科学技术学院生物统计学课程组制作 二、总体方差的区间估计(μ未知) 例:假设从加工的同一批产品中任意抽取20件,测得它们的平均长度为12厘米,方差为0.0023平方厘米,求总体方差的置信度为95%的置信区间。 为构造区间估计的工作表,我们应在工作表的A列输入计算指标,B列输入计算公式,C列输入计算结果。 * * 孝感学院生命科学技术