1. 模拟量输入范围

  1. 模拟量的采集,输入范围一定是刚需,不可忽略的
  2. 确认模拟信号的大小,可以选择不同芯片的模拟输入范围,如果超出,可以使用分压和运放跟随方式采集模拟信号。

2.采样率

  1. 采样率指ADC每秒钟会进行多少次的模拟量转数字量的操作,如10K/s就是说ADC每秒钟,就采集了10K个模拟量,并将模拟量转换为数字量。
  2. 当采样频率大于信号中最高频率的2倍时,采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的2.56~4倍;采样定理又称奈奎斯特定理。
  3. 例如,采集50K的信号,采样频率最起码大于2.56*50K

3.通道数

  1. 多通道是独立通道还是差分通道?
  2. 是否可以进行同步采样?
  3. 差分通道是否可以互换?
  4. 其余通道是否可以接地?

注意:以上几点是多通道考虑的问题

4.分辨率

  1. ADC的分辨率指的是模数转换器所能表示的最大数是多少,即ADC的位数,如果ADC是10位ADC,那么分辨率是2的10次方,即1024的分辨率,如果模拟量是温度,测量范围是0~100度,那么可以把100度分成1024份,每一份你都能感知,当温度有100/1024度的变化时,能测量出来。
  2. 位数越高采样的精度越精确。但是并不是选型的时候精度越高越好,越高的精度代表着成本越高,根据项目实际需要,选择合适成本的精度。
  3. 8位以下的A/D转换器称为低分辨率ADC,9~12位称为中分辨率ADC,13位以上为高分辨率。A/D器件的位数越高,分辨率越高,量化误差越小,能达到的精度越高。
  4. 量化误差, 由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。通常是1 个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。在转化过程中,由于存在量化误差和系统误差,精度会有所损失。其中量化误差对于精度的影响是可计算的,它主要决定于A/D转换器件的位数。

5.接口类型

  1. 分为:串口,并口;串口一般是SPI
  2. 根据单片机资源确定

6. ADC输入阻抗

ADC的阻抗匹配问题在特定架构的ADC中显得尤为重要,其会影响数据转换的精度。当往特定接口串入ADC时候,其相当于并联一个阻抗为ADC输入阻抗的元件,故会对电路的分压产生一定的影响。当信号源内阻与ADC输入阻抗相近时,会对ADC精度产生较大的影响。常见的解决方案是保证源端相比于ADC输入阻抗低阻,或者采用输入缓冲器(一般Σ-Δ型ADC内会内置)来提高输入阻抗。