加载流程
Glide源码
加载流程
LRU是什么
内存缓存的LRU
LruCache
往期回顾
RecyclerView 绘制流程及Recycler缓存
Glide使用详解
Glide使用详解
Glide里的缓存
默认情况下,Glide 会在开始一个新的图片请求之前检查以下多级的缓存:
- 活动资源 (Active Resources) - 现在是否有另一个 View 正在展示这张图片?
- 内存缓存 (Memory cache) - 该图片是否最近被加载过并仍存在于内存中?
- 资源类型(Resource) - 该图片是否之前曾被解码、转换并写入过磁盘缓存?
- 数据来源 (Data) - 构建这个图片的资源是否之前曾被写入过文件缓存?
前两步检查图片是否在内存中,如果是则直接返回图片。后两步则检查图片是否在磁盘上,以便快速但异步地返回图片。
如果四个步骤都未能找到图片,则Glide会返回到原始资源以取回数据(原始文件,Uri, Url等)。
什么是三级缓存?
- 内存缓存:优先加载,速度最快
- 本地缓存:其次加载,速度快
- 网络缓存:最后加载,速度慢,浪费流量
缓存机制
Glide使用了ActiveResources(活动缓存弱引用)+MemoryCache(内存缓存Lru算法)+DiskCache(磁盘缓存Lru算法)。
- ActiveResources:存储当前界面使用到的图片。界面不展示后,该Bitmap又被缓存至MemoryCache中,并从ActiveResources中删除。
- Memory Cache:存储当前没有使用到的Bitmap,当MemoryCache中得到Bitmap后,该Bitmap又被缓存至ActiveResources中,并从MemoryCache中删除。
- Disk Cache:持久缓存。例如图片加圆角,处理后图片会被缓存到文件中,应用被再次打开时可以加载缓存直接使用。
注意: ActiveResources + MemoryCache是内存缓存,都属于运行时缓存,且互斥(同一张图片不会同时缓存在ActiveResources+MemoryCache),应用被杀死后将不存在。
Glide 内部是使用 LruCache、弱引用和硬盘缓存实现的。
Glide 主要将缓存分为两块内存缓存和硬盘缓存,两种缓存的结合,构成了 Glide 缓存机制的核心。
为何设计出活动缓存
因为内存缓存使用LRU算法,当你使用Gilde加载并显示第一张图片时,后面又加载了很多图片,同时你的第一张图片还在用。这个时候内存缓存根据LRU算法可能会删除你正在使用的第一张照片。这样的后果就是你正在使用的照片找不到,后果就是程序崩溃。
加载流程
流程就是这么个流程下面咱们通过源码加深一下。
Glide源码
加载流程
1.Engine类
负责启动加载并管理活动资源和缓存资源,它里面有个load方法。没错就是提供路径加载图片的方法。
2.load方法
这个方法里面满满的干货。
public <R> LoadStatus load(...) {
long startTime = VERBOSE_IS_LOGGABLE ? LogTime.getLogTime() : 0;
EngineKey key =
keyFactory.buildKey(
model,
signature,
width,
height,
transformations,
resourceClass,
transcodeClass,
options);
EngineResource<?> memoryResource;
synchronized (this) {
memoryResource = loadFromMemory(key, isMemoryCacheable, startTime);
if (memoryResource == null) {
return waitForExistingOrStartNewJob(...);
}
}
// Avoid calling back while holding the engine lock, doing so makes it easier for callers to
// deadlock.
cb.onResourceReady(
memoryResource, DataSource.MEMORY_CACHE, /* isLoadedFromAlternateCacheKey= */ false);
return null;
}
3.EngineKey
An in memory only cache key used to multiplex loads.
用于多路传输加载的仅内存缓存密钥.
EngineKey key =
keyFactory.buildKey(
...);
4.loadFromMemory
根据上面load方法提供咱们来看看loadFromMemory()这个是重点;
5.loadFromActiveResources
6.loadFromCache
7.getEngineResourceFromCache
到这里如有还未找到,那就说明该图片未保存至内存缓存中来。咱继续往下走,顺着源码跑。
8.waitForExistingOrStartNewJob
咱弄个简化版
private <R> LoadStatus waitForExistingOrStartNewJob(...) {
//通过添加和删除加载的回调并通知来管理加载的类
//加载完成时回调。
//咱都没数据肯定没加载完成,这个不管。急着往下看
EngineJob<?> current = jobs.get(key, onlyRetrieveFromCache);
if (current != null) {
current.addCallback(cb, callbackExecutor);
if (VERBOSE_IS_LOGGABLE) {
logWithTimeAndKey("Added to existing load", startTime, key);
}
return new LoadStatus(cb, current);
}
//同上,接着向下看
EngineJob<R> engineJob =
engineJobFactory.build(
key,
isMemoryCacheable,
useUnlimitedSourceExecutorPool,
useAnimationPool,
onlyRetrieveFromCache);
//负责从缓存数据或原始源解码资源的类,看着像,咱看看DecodeJob
//应用转换和代码转换。
DecodeJob<R> decodeJob =
decodeJobFactory.build(
...
engineJob);
jobs.put(key, engineJob);
engineJob.addCallback(cb, callbackExecutor);
engineJob.start(decodeJob);
if (VERBOSE_IS_LOGGABLE) {
logWithTimeAndKey("Started new load", startTime, key);
}
return new LoadStatus(cb, engineJob);
}
9.DecodeJob
class DecodeJob<R>
implements DataFetcherGenerator.FetcherReadyCallback,
Runnable,
Comparable<DecodeJob<?>>,
Poolable {
}
...
//构造方法有个DiskCacheProvider看着跟磁盘缓存有关咱进去瞅瞅
DecodeJob(DiskCacheProvider diskCacheProvider, Pools.Pool<DecodeJob<?>> pool) {
this.diskCacheProvider = diskCacheProvider;
this.pool = pool;
}
...
10.DiskCacheProvider
磁盘缓存实现的入口。
在指定的内存中创建基于{@link com.bumptech.glide.disklrucache.disklrucache}的磁盘缓存。
磁盘缓存目录。
public class DiskLruCacheFactory implements DiskCache.Factory {
private final long diskCacheSize;
private final CacheDirectoryGetter cacheDirectoryGetter;
/** 在UI线程外调用接口以获取缓存文件夹。 */
public interface CacheDirectoryGetter {
File getCacheDirectory();
}
public DiskLruCacheFactory(final String diskCacheFolder, long diskCacheSize) {
this(
new CacheDirectoryGetter() {
@Override
public File getCacheDirectory() {
return new File(diskCacheFolder);
}
},
diskCacheSize);
}
public DiskLruCacheFactory(
final String diskCacheFolder, final String diskCacheName, long diskCacheSize) {
this(
new CacheDirectoryGetter() {
@Override
public File getCacheDirectory() {
return new File(diskCacheFolder, diskCacheName);
}
},
diskCacheSize);
}
/**
*使用此构造函数时,将调用{@link CacheDirectoryGetter#getCacheDirectory()}
*UI线程,允许在不影响性能的情况下进行I/O访问。
*在UI线程外调用@param cacheDirectoryGetter接口以获取缓存文件夹。
*@param diskCacheSize LRU磁盘缓存所需的最大字节大小。
*/
// Public API.
@SuppressWarnings("WeakerAccess")
public DiskLruCacheFactory(CacheDirectoryGetter cacheDirectoryGetter, long diskCacheSize) {
this.diskCacheSize = diskCacheSize;
this.cacheDirectoryGetter = cacheDirectoryGetter;
}
@Override
public DiskCache build() {
File cacheDir = cacheDirectoryGetter.getCacheDirectory();
if (cacheDir == null) {
return null;
}
if (cacheDir.isDirectory() || cacheDir.mkdirs()) {
return DiskLruCacheWrapper.create(cacheDir, diskCacheSize);
}
return null;
}
}
11.DiskCache.Factory
DiskLruCacheFactory实现的接口是什么,咱看看
/** 用于向磁盘缓存写入数据和从磁盘缓存读取数据的接口 */
public interface DiskCache {
/** 用于创建磁盘缓存的接口 */
interface Factory {
/** 250 MB of cache. */
int DEFAULT_DISK_CACHE_SIZE = 250 * 1024 * 1024;
String DEFAULT_DISK_CACHE_DIR = "image_manager_disk_cache";
/** 返回新的磁盘缓存,如果无法创建磁盘缓存,则返回{@code null}*/