目录

  • 缓存污染
  • 如何解决缓存污染问题?
  • LRU
  • LFU
  • 参考资料


缓存污染

在一些场景下,有些数据被访问的次数非常少,甚至只会被访问一次。当这些数据服务完访问请求后,如果还继续留存在缓存中的话,就只会白白占用缓存空间。这种情况,就是缓存污染。

当缓存污染不严重时,只有少量数据占据缓存空间,此时,对缓存系统的影响不大。但缓存污染一旦变得严重后,就会有大量不再访问的数据滞留在缓存中。如果这时数据占满了缓存空间,再往缓存中写入新数据时,就需要先把这些数据逐步淘汰出缓存, 这就会引入额外的操作时间开销,进而会影响应用的性能。

如何解决缓存污染问题?

解决缓存污染,就是得把不会再被访问的数据筛选出来并淘汰掉。这样就不用等到缓存被写满以后,再逐一淘汰旧数据之后,才能写入新数据了。而哪些数据能留存在缓存中,是由缓存的淘汰策略决定的。

除了在明确知道数据被再次访问的情况下,volatile-ttl 可以有效避免缓存污染。在其他情况下,volatile-random、allkeys-random、volatile-ttl 这三种策略并不能应对缓存污染问题。

LRU

Redis 中的 LRU 策略,会在每个数据对应的 RedisObject 结构体中设置一个 lru 字段,用来记录数据的访问时间戳。在进行数据淘汰时,LRU 策略会在候选数据集中淘汰掉 lru 字段值最小的数据,也就是访问时间最久的数据。

所以,在数据被频繁访问的业务场景中,LRU 策略的确能有效留存访问时间最近的数据。 而且,因为留存的这些数据还会被再次访问,所以又可以提升业务应用的访问速度。 但是,也正是因为只看数据的访问时间,**使用 LRU 策略在处理扫描式单次查询操作时,无法解决缓存污染。**所谓的扫描式单次查询操作,就是指应用对大量的数据进行一次全体读取,每个数据都会被读取,而且只会被读取一次。此时,因为这些被查询的数据刚刚被访问过,所以 lru 字段值都很大。 在使用 LRU 策略淘汰数据时,这些数据会留存在缓存中很长一段时间,造成缓存污染。如果查询的数据量很大,这些数据占满了缓存空间,却又不会服务新的缓存请求,此时,再有新数据要写入缓存的话,还是需要先把这些旧数据替换出缓存才行,这会影响缓存的性能。

所以,采用了 LRU 策略,扫描式单次查询会造成缓存污染。为了应对这类缓存污染问题,Redis 从 4.0 版本开始增加了 LFU 淘汰策略。 与 LRU 策略相比,LFU 策略中会从两个维度来筛选并淘汰数据:

  • 一是,数据访问的时效性 (访问时间离当前时间的远近);
  • 二是,数据的被访问次数。
LFU

LFU 缓存策略是在 LRU 策略基础上,为每个数据增加了一个计数器,来统计这个数据的访问次数。当使用 LFU 策略筛选淘汰数据时,首先会根据数据的访问次数进行筛选,把访问次数最低的数据淘汰出缓存。如果两个数据的访问次数相同,LFU 策略再比较这两个数据的访问时效性,把距离上一次访问时间更久的数据淘汰出缓存。

和那些被频繁访问的数据相比,扫描式单次查询的数据因为不会被再次访问,所以它们的访问次数不会再增加。因此,LFU 策略会优先把这些访问次数低的数据淘汰出缓存。这样 一来,LFU 策略就可以避免这些数据对缓存造成污染了

为了避免操作链表的开销,Redis 在实现 LRU 策略时使用了两个近似方法:

  • Redis 是用 RedisObject 结构来保存数据的,RedisObject 结构中设置了一个 lru 字段,用来记录数据的访问时间戳;
  • Redis 并没有为所有的数据维护一个全局的链表,而是通过随机采样方式,选取一定数量(例如 10 个)的数据放入候选集合,后续在候选集合中根据 lru 字段值的大小进行筛选。

在此基础上,Redis 在实现 LFU 策略的时候,只是把原来 24bit 大小的 lru 字段,又进一 步拆分成了两部分:

  • ldt 值:lru 字段的前 16bit,表示数据的访问时间戳;
  • counter 值:lru 字段的后 8bit,表示数据的访问次数

总结一下:当 LFU 策略筛选数据时,Redis 会在候选集合中,根据数据 lru 字段的后 8bit 选择访问次数最少的数据进行淘汰。当访问次数相同时,再根据 lru 字段的前 16bit 值大 小,选择访问时间最久远的数据进行淘汰。

Redis 只使用了 8bit 记录数据的访问次数,而 8bit 记录的最大值是 255,这样可以吗?

在实际应用中,一个数据可能会被访问成千上万次。如果每被访问一次,counter 值就加 1 的话,那么,只要访问次数超过了 255,数据的 counter 值就一样了。在进行数据淘汰时,LFU 策略就无法很好地区分并筛选这些数据,反而还可能会把不怎么访问的数据留存在了缓存中。

因此,在实现 LFU 策略时,Redis 并没有采用数据每被访问一次,就给对应的 counter 值加 1 的计数规则,而是采用了一个更优化的计数规则

LFU 策略实现的计数规则是:每当数据被访问一次时,首先,用计数器当前的值乘以配置项 lfu_log_factor 再加 1,再取其倒数,得到一个 p 值;然后,把这个 p 值和一个取值范围在(0,1)间的随机数 r 值比大小,只有 p 值大于 r 值时,计数器才加 1。

使用了这种计算规则后,可以通过设置不同的 lfu_log_factor 配置项,来控制计数器值增加的速度,避免 counter 值很快就到 255 了。

因为使用了非线性递增的计数器方法,即使缓存数据的访问次数成千上万,LFU 策略 也可以有效地区分不同的访问次数,从而进行合理的数据筛选。

当 lfu_log_factor 取值为 10 时,百、千、十万级别的访问次数对应的 counter 值已经有明显的区分了,所以在应用 LFU 策略时,一般可以将 lfu_log_factor 取值为 10。

在一些场景下,有些数据在短时间内被大量访问后就不会再被访问了。那么再按照访问次数来筛选的话,这些数据会被留存在缓 存中,但不会提升缓存命中率。为此,Redis 在实现 LFU 策略时,还设计了一个 counter 值的衰减机制

LFU 策略使用衰减因子配置项 lfu_decay_time 来控制访问次数的衰减。LFU 策略会计算当前时间和数据最近一次访问时间的差值,并把这个差值换算成以分钟为单位。 然后,LFU 策略再把这个差值除以 lfu_decay_time 值,所得的结果就是数据 counter 要衰减的值。

参考资料

《Redis 45讲》