目录

前言:

熵权法:

     正向化函数代码

(1)Positivization

(2)Inter2Max

(3)Mid2Max

(4)Min2Max

 TOSIS模型


前言:

前几日参加亚太杯建模,本来选择A题,奈何关于opencv在VS下的环境并未搭建过,而图像边缘处理的部分奈何在caffe和tens flow环境下都只是简单尝试过一些方法,有关亚像素处理,奈何手艺不精,所以只能选择C题,来进行评价模型的工作。而由于C题的特殊性,使用TOPSIS模型进行评估算是比较适合的方法。而由于建立评价模型内的各项指标需要相应的指标权重,所以这时候熵权法可能算是一种相对合适的方法(主要是topsis模型对于数据的一些数据处理的函数文件和topsis基本一样)。

熵权法:

熵权法是一种在综合考虑各因素提供信息量的 基础上计算一个综合指标的数学方法。作为客观综合定权法,其主要根据各指标传递给决策者的信息量大小来确定权重。根据信息论基本原理,信息是系统有序程度的度量;而熵则是系统无序程度的度量。因此,可用系 统熵来反映其提供给决策者的信息量大小,系统熵可通过熵权法得到。

下面直接分享相应代码:

clc;clear;
%  实现用熵值法求各指标(列)的权重及各数据行的得分
% x为原始数据矩阵, 一行代表一个样本, 每列对应一个指标
% s返回各行得分, w返回各列权重
load('data_water_quality.mat')%载入数据
x=X;     %X为工作表中的样本数据
%% 数据的正向化处理
[n,m]=size(x); % X中有n个样本, m个指标
disp(['共有' num2str(n) '个评价对象, ' num2str(m) '个评价指标']) 
Judge = input(['这' num2str(m) '个指标是否需要经过正向化处理,需要请输入1 ,不需要输入0:  ']);

if Judge == 1
    Position = input('请输入需要正向化处理的指标所在的列,例如第2、3、6三列需要处理,那么你需要输入[2,3,6]: '); %[2,3,4]
    disp('请输入需要处理的这些列的指标类型(1:极小型, 2:中间型, 3:区间型) ')
    Type = input('例如:第2列是极小型,第3列是区间型,第6列是中间型,就输入[1,3,2]:  '); %[2,1,3]
    % 注意,Position和Type是两个同维度的行向量
    for i = 1 : size(Position,2)  %这里需要对这些列分别处理,因此我们需要知道一共要处理的次数,即循环的次数
        X(:,Position(i)) = Positivization(X(:,Position(i)),Type(i),Position(i));
    % Positivization是我们自己定义的函数,其作用是进行正向化,其一共接收三个参数
    % 第一个参数是要正向化处理的那一列向量 B(:,Position(i))   X(:,n)表示取第n列的全部元素
    % 第二个参数是对应的这一列的指标类型(1:极小型, 2:中间型, 3:区间型)
    % 第三个参数是告诉函数我们正在处理的是原始矩阵中的哪一列
    % 该函数有一个返回值,它返回正向化之后的指标,我们可以将其直接赋值给我们原始要处理的那一列向量
    end
    disp('正向化后的矩阵 X =  ')
    disp(X)
end
%% 数据的归一化处理
% Matlab2010b,2011a,b版本都有bug,需如下处理. 其它版本直接用[X,ps]=mapminmax(x',0,1);即可

[B,ps]=mapminmax(X');
ps.ymin=0.002; % 归一化后的最小值
ps.ymax=0.996; % 归一化后的最大值
ps.yrange=ps.ymax-ps.ymin; % 归一化后的极差,若不调整该值, 则逆运算会出错
B=mapminmax(X',ps);
% mapminmax('reverse',xx,ps); % 反归一化, 回到原数据
B=B';  % B为归一化后的数据
%% 计算第j个指标下,第i个记录占该指标的比重p(i,j)
for i=1:n
    for j=1:m
        p(i,j)=B(i,j)/sum(X(:,j));
    end
end
%% 计算第j个指标的熵值e(j)
k=1/log(n);
for j=1:m
    e(j)=-k*sum(p(:,j).*log(p(:,j)));
end
d=ones(1,m)-e;  % 计算信息熵冗余度
w=d./sum(d);    % 求权值w
s=w*p';         % 求综合得分[\code]
disp("信息冗余度为");disp(d)
disp("各样本综合得分s为");disp(s);
disp("各指标权重w为");disp(w);

     正向化函数代码

(1)Positivization

% function [输出变量] = 函数名称(输入变量)  
% 函数的中间部分都是函数体
% 函数的最后要用end结尾
% 输出变量和输入变量可以有多个,用逗号隔开
% function [a,b,c]=test(d,e,f)
%     a=d+e;
%     b=e+f;
%     c=f+d;
% end
% 自定义的函数要单独放在一个m文件中,不可以直接放在主函数里面(和其他大多数语言不同)

function [posit_x] = Positivization(x,type,i)
% 输入变量有三个:
% x:需要正向化处理的指标对应的原始列向量
% type: 指标的类型(1:极小型, 2:中间型, 3:区间型)
% i: 正在处理的是原始矩阵中的哪一列
% 输出变量posit_x表示:正向化后的列向量
    if type == 1  %极小型
        disp(['第' num2str(i) '列是极小型,正在正向化'] )
        posit_x = Min2Max(x);  %调用Min2Max函数来正向化
        disp(['第' num2str(i) '列极小型正向化处理完成'] )
        disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')
    elseif type == 2  %中间型
        disp(['第' num2str(i) '列是中间型'] )
        best = input('请输入最佳的那一个值: ');
        posit_x = Mid2Max(x,best);
        disp(['第' num2str(i) '列中间型正向化处理完成'] )
        disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')
    elseif type == 3  %区间型
        disp(['第' num2str(i) '列是区间型'] )
        a = input('请输入区间的下界: ');
        b = input('请输入区间的上界: '); 
        posit_x = Inter2Max(x,a,b);
        disp(['第' num2str(i) '列区间型正向化处理完成'] )
        disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')
    else
        disp('没有这种类型的指标,请检查Type向量中是否有除了1、2、3之外的其他值')
    end
end

(2)Inter2Max

function [posit_x] = Inter2Max(x,a,b)
    r_x = size(x,1);  % row of x 
    M = max([a-min(x),max(x)-b]);
    posit_x = zeros(r_x,1);   %zeros函数用法: zeros(3)  zeros(3,1)  ones(3)
    % 初始化posit_x全为0  初始化的目的是节省处理时间
    for i = 1: r_x
        if x(i) < a
           posit_x(i) = 1-(a-x(i))/M;
        elseif x(i) > b
           posit_x(i) = 1-(x(i)-b)/M;
        else
           posit_x(i) = 1;
        end
    end
end

(3)Mid2Max

function [posit_x] = Mid2Max(x,best)
    M = max(abs(x-best));
    posit_x = 1 - abs(x-best) / M;
end

(4)Min2Max

function [posit_x] = Min2Max(x)
    posit_x = max(x) - x;
     %posit_x = 1 ./ x;    %如果x全部都大于0,也可以这样正向化
end

 TOSIS模型

TOPSIS 法是一种常用的综合评价方法,能充分利用原始数据的 信息,其结果能精确地反映各评价方案之间的差距。 基本过程为先将原始数据矩阵统一指标类型(一般正向化处理) 得到正向化的矩阵,再对正向化的矩阵进行标准化处理以消除各指 标量纲的影响,并找到有限方案中的最优方案和最劣方案,然后分 别计算各评价对象与最优方案和最劣方案间的距离,获得各评价对 象与最优方案的相对接近程度,以此作为评价优劣的依据。该方法对数据分布及样本含量没有严格限制,数据计算简单易行。

%%  第一步:把数据复制到工作区,并将这个矩阵命名为X
% (1)在工作区右键,点击新建(Ctrl+N),输入变量名称为X
% (2)在Excel中复制数据,再回到Excel中右键,点击粘贴Excel数据(Ctrl+Shift+V)
% (3)关掉这个窗口,点击X变量,右键另存为,保存为mat文件(下次就不用复制粘贴了,只需使用load命令即可加载数据)
% (4)注意,代码和数据要放在同一个目录下哦,且Matlab的当前文件夹也要是这个目录。
clear;clc
%%  第二步:判断是否需要正向化
[n,m] = size(X);
disp(['共有' num2str(n) '个评价对象, ' num2str(m) '个评价指标']) 
Judge = input(['这' num2str(m) '个指标是否需要经过正向化处理,需要请输入1 ,不需要输入0:  ']);

if Judge == 1
    Position = input('请输入需要正向化处理的指标所在的列,例如第2、3、6三列需要处理,那么你需要输入[2,3,6]: '); %[2,3,4]
    disp('请输入需要处理的这些列的指标类型(1:极小型, 2:中间型, 3:区间型) ')
    Type = input('例如:第2列是极小型,第3列是区间型,第6列是中间型,就输入[1,3,2]:  '); %[2,1,3]
    % 注意,Position和Type是两个同维度的行向量
    for i = 1 : size(Position,2)  %这里需要对这些列分别处理,因此我们需要知道一共要处理的次数,即循环的次数
        X(:,Position(i)) = Positivization(X(:,Position(i)),Type(i),Position(i));
    % Positivization是我们自己定义的函数,其作用是进行正向化,其一共接收三个参数
    % 第一个参数是要正向化处理的那一列向量 X(:,Position(i))   回顾上一讲的知识,X(:,n)表示取第n列的全部元素
    % 第二个参数是对应的这一列的指标类型(1:极小型, 2:中间型, 3:区间型)
    % 第三个参数是告诉函数我们正在处理的是原始矩阵中的哪一列
    % 该函数有一个返回值,它返回正向化之后的指标,我们可以将其直接赋值给我们原始要处理的那一列向量
    end
    disp('正向化后的矩阵 X =  ')
    disp(X)
end
%% 作业:在这里增加是否需要算加权
% 补充一个基础知识:m*n维的矩阵A 点乘 n维行向量B,等于这个A的每一行都点乘B
% (注意:2017以及之后版本的Matlab才支持,老版本Matlab会报错)
% % 假如原始数据为:
%   A=[1, 2, 3;
%        2, 4, 6] 
% % 权重矩阵为:
%   B=[ 0.2, 0.5 ,0.3 ] 
% % 加权后为:
%   C=A .* B
%     0.2000    1.0000    0.9000
%     0.4000    2.0000    1.8000
% 类似的,还有矩阵和向量的点除, 大家可以自己试试计算A ./ B
% 注意,矩阵和向量没有 .- 和 .+ 哦 ,大家可以试试,如果计算A.+B 和 A.-B会报什么错误。

%% 这里补充一个小插曲
% % 在上一讲层次分析法的代码中,我们可以优化以下的语句:
% % Sum_A = sum(A);
% % SUM_A = repmat(Sum_A,n,1);
% % Stand_A = A ./ SUM_A;
% % 事实上,我们把第三行换成:Stand_A = A ./ Sum_A; 也是可以的哦 
% % (再次强调,新版本的Matlab才能运行哦)

%% 让用户判断是否需要增加权重
disp("请输入是否需要增加权重向量,需要输入1,不需要输入0")
Judge = input('请输入是否需要增加权重: ');
if Judge == 1
    disp(['如果你有3个指标,你就需要输入3个权重,例如它们分别为0.25,0.25,0.5, 则你需要输入[0.25,0.25,0.5]']);
    weigh = input(['你需要输入' num2str(m) '个权数。' '请以行向量的形式输入这' num2str(m) '个权重: ']);
    OK = 0;  % 用来判断用户的输入格式是否正确
    while OK == 0 
        if abs(sum(weigh) - 1)<0.000001 && size(weigh,1) == 1 && size(weigh,2) == m   % 这里要注意浮点数的运算是不精准的。
             OK =1;
        else
            weigh = input('你输入的有误,请重新输入权重行向量: ');
        end
    end
else
    weigh = ones(1,m) ./ m ; %如果不需要加权重就默认权重都相同,即都为1/m
end


%% 第三步:对正向化后的矩阵进行标准化
Z = X ./ repmat(sum(X.*X) .^ 0.5, n, 1);
disp('标准化矩阵 Z = ')
disp(Z)

%% 第四步:计算与最大值的距离和最小值的距离,并算出得分
D_P = sum([(Z - repmat(max(Z),n,1)) .^ 2 ] .* repmat(weigh,n,1) ,2) .^ 0.5;   % D+ 与最大值的距离向量
D_N = sum([(Z - repmat(min(Z),n,1)) .^ 2 ] .* repmat(weigh,n,1) ,2) .^ 0.5;   % D- 与最小值的距离向量
S = D_N ./ (D_P+D_N);    % 未归一化的得分
disp('最后的得分为:')
stand_S = S / sum(S)
[sorted_S,index] = sort(stand_S ,'descend')

% A = magic(5)  % 幻方矩阵
% M = magic(n)返回由1到n^2的整数构成并且总行数和总列数相等的n×n矩阵。阶次n必须为大于或等于3的标量。
% sort(A)若A是向量不管是列还是行向量,默认都是对A进行升序排列。sort(A)是默认的升序,而sort(A,'descend')是降序排序。
% sort(A)若A是矩阵,默认对A的各列进行升序排列
% sort(A,dim)
% dim=1时等效sort(A)
% dim=2时表示对A中的各行元素升序排列
% A = [2,1,3,8]
% Matlab中给一维向量排序是使用sort函数:sort(A),排序是按升序进行的,其中A为待排序的向量;
% 若欲保留排列前的索引,则可用 [sA,index] = sort(A,'descend') ,排序后,sA是排序好的向量,index是向量sA中对A的索引。
% sA  =  8     3     2     1
% index =  4     3     1     2